About The Hong Kong University of Science and Technology

The Hong Kong University of Science and Technology (HKUST) (https://hkust.edu.hk/) is a world-class university that excels in driving innovative education, research excellence, and impactful knowledge transfer. With a holistic and interdisciplinary pedagogy approach, HKUST was ranked 3rd in the Times Higher Education’s Young University Rankings 2024, while 12 of its subjects were ranked among the world’s top 50 in the QS World University Rankings by Subject 2024, with “Data Science and Artificial Intelligence” being ranked first in Hong Kong and 10th in the world. Our graduates are highly competitive, consistently ranking among the world’s top 30 most sought-after employees. In terms of research and entrepreneurship, over 80% of our work was rated “Internationally excellent” or “world leading” in the latest Research Assessment Exercise 2020 of Hong Kong’s University Grants Committee. As of June 2024, HKUST members have founded 1,815 active start-ups, including 10 Unicorns and 14 exits (IPO or M&A).

Current Active Patent Portfolio by Technology Area

- Biotechnology: 10.50%
- Wave Functional Materials: 2.84%
- Communications: 3.45%
- Digital Technology: 3.65%
- Neuroscience: 4.92%
- Artificial Intelligence, Autonomous Systems & Robotics: 8.32%
- Aging and Healthcare: 9.69%
- Biotechnology: 10.50%
- Smart Cities: 2.64%
- Ocean Science and Technology: 1.06%
- Advanced Materials: 20.39%
- Microelectronics: 19.17%
- Energy & Sustainability: 14.60%

2,064 Active Patents/Patent Applications (HKUST and Mainland Subsidiaries)

Transforming Industry and Empowering Society: Unveiling Our Impact

- 1,815 Active startups
- 14 Successful exits (IPOs and acquisitions)
- 10 Unicorns nurtured
- Addressed COVID-19 pandemic and social issues

Research and Strategic IP management enhanced the IP utilization

- No. 1 patent influence metric in China and 33rd in global by Nature Index (2022)
- Patent utilization: 33%

Strong Industry Engagement

- 826 Industry Collaborations
- 173 Active License Agreements
- No. 1 in industry income index in Hong Kong (THE ranking 2023)

© 2024, The Hong Kong University of Science and Technology. All Rights Reserved.
Electronics, AI and Smart Systems (EAS)

EAS01 IoT and Sensing Technologies for Smart City Applications (Prof. Gary CHAN) P.4
EAS02 AI-Powered Automated Smart Dental Treatment Design System (Prof. Hao CHEN) P.4
EAS03 VideoCrafter: A Unified Toolkit for Personalized Text-to-Video Generation and Editing (Prof. Qifeng CHEN) P.5
EAS04 Collaborative and Personalized Digital Twin Platform for Smart Facility Operation Management (Prof. Jack CHENG) P.5
EAS05 Efficient Inference Accelerator for Large AI Model (Prof. Tim CHENG) P.6
EAS06 Biomimetic Olfactory Chips Based on Large-Scale Monolithically Integrated Nanotube Sensor Arrays (Prof. Zhiyong FAN) P.6
EAS07 Middleware for Quantum Computers and Simulators (Prof. Gyuboong JO) P.7
EAS08 Photo-Aligned Multi-Domain Vertical Alignment LCD for Cost Effective Mass Production with Existing Equipment (Prof. Ho Sing KWOK) P.7
EAS09 An Integrative System for food 3D Printing and Multi-Level Cooking for Making Personalized Meals with Ease (Prof. Mitch LI) P.8
EAS11 Building the Future: Harnessing Technology’s Potential to Transform Construction (Dr. Haobo LIANG) P.8
EAS12 expii: the Ultimate Platform to Unlock Value from Data (Prof. Mengqian LU) P.9
EAS13 Agile Executive Terminal for Robots (Prof. Yajing SHEN) P.9
EAS14 Quantum Rod LEDs for Display and Lighting with High Quantum Yield and Tunable Wavelength of Emission (Prof. Abhishek SRIVASTAVA) P.10
EAS15 Physics-guided AI & Intelligent Satellite-empowered Information System and SaaS platform (Prof. Chi-Ying TSUI) P.10
EAS16 Hardware Accelerator for Financial Computing (Prof. Kai CHEN) P.11
EAS17 Electronic Design Automation (EDA) for Deep Learning Accelerator Design (Prof. Fengbin TU) P.11
EAS18 Towards Carbon Neutral Cities and Countryside: Smart Colourful Integrated Photovoltaic System (Prof. Changying XIANG) P.12
EAS19 Haptic Sensors for Future Human-Robot Interaction (Prof. Hongyu YU) P.12
EAS20 High-performance Specialized Digital Sensor Chip for IoT Era (Prof. George YUAN) P.13
EAS22 Next-Generation Financial Indexing with Artificial Intelligence (Prof. Chao HE) P.13
EAS23 Innovative Full-Color Micro-LED Micro-Display: A Revolutionary Technology for AR/VR industry (Prof. Wing Cheung CHONG) P.14
EAS24 AINIC: A Streamlined, Scalable, and High-Performance RDMA NIC for AI Clusters (Prof. Kai CHEN) P.14
EAS25 AI Agents based on Large Language Model (Prof. Yang WANG) P.15
EAS26 A Time- and Energy-Efficient Ising Computer for Portfolio Optimization and Risk Management (Prof. Qiming SHAO) P.15
EAS27 AI-Blockchain Enabled Decentralized Art Title, Asset Authentication & Management Platform (Dr. Daniel CHUN) P.16
EAS28 Human-friendly Miniature Autonomous Blimp (UST-MAB) (Prof. Fumin ZHANG) P.16
EAS29 Automated Testing Technologies for Deep Learning Systems (Prof. Shing-Chi CHEUNG) P.17
EAS30 Practical Accelerator for Fully Homomorphic Encryption with a Heterogeneous Architecture (Prof. Kai CHEN) P.17
EAS31 Open and Decentralized End-to-End AI Computing for Foundation Model-as-a-Service (Prof. Song GUI) P.18
EAS32 AI-Powered Essay Grading Assistant (Prof. Joon Nak CHOI) P.18
EAS33 Wireless and Self-powered Sensor System (Prof. Zhengbao YANG) P.19
EAS34 AI-generated Blockchain System for Legal Term Analysis and Automated Smart Contract Transactions (Prof. Jingshun Wu) P.19
EAS35 Distributed AI Heterogeneous Cloud (Prof. Yang WANG) P.20
EAS36 FMLoCo Foundation Model based Logistics Copilot (Prof. Yike GUO) P.20
EAS37 Segmenting Consumer Location-Product Preferences for Assortment Localization (Prof. Jia LIU) P.21
EAS39 FeSent - AI-powered Text Analysis for Informed Investment Decisions (Prof. Allen HUANG) P.21
EAS40 Micro-second Response Ferroelectric Liquid Crystal (FLC) Light Modulator for Time-Sequential-Multiplexed 3D, Vivid-Color Display, and Wavelength Selective Switch (WSS) (Prof. Ho-Sing KWOK) P.22
EAS41 Mask-free Material Deposition on Arbitrary Substrate by Direct Laser Writing (Prof. Sen YANG) P.22
EAS 01 IoT and Sensing Technologies for Smart City Applications
Principal Investigator | Prof. Gary CHAN
Technology Readiness Level | TRL 9 IP status | Patented

Research, develop and deploy innovative IoT and sensing technologies based on machine learning and data mining for smart city applications.

Key Technology Edges:
- **Edge AI**: Our computations are at the edge, saving cloud resources
- **Cost-effective**: Our algorithms are able to use minimal resources in IoT devices without much sacrifice in performance
- **Patented or patent-pending**: Our sensing and video technologies are either patented or patent-pending

EAS 02 AI-Powered Automated Smart Dental Treatment Design System
Principal Investigator | Prof. Hao CHEN
Technology Readiness Level | TRL 6 IP status | Patented

Introducing a game-changing AI-Powered Dental Treatment Design System.

It leverages AI and computer vision for precise treatment planning, including implants, crowns, dentures, braces, and aligners. This technology disrupts dental care by:
- Personalizing treatment options for each patient
- Optimizing the design process for superior outcomes
- Revolutionizing workflow efficiency with advanced medical imaging

Key Technology Edges:
- Contour-aware multi-modality registration for CBCT and 3D intra-oral scan
- Generative teeth crown inpainting
- Human-in-the-loop implant position design

EAS 03 VideoCrafter: A Unified Toolkit for Personalized Text-to-Video Generation and Editing
Principal Investigator | Prof. Qi-feng CHEN
Technology Readiness Level | TRL 6

Foundation models for high-quality video generation support a range of controls, including text, image, motion, character, and style, providing users with a highly flexible tool for producing innovative content.

Key Technology Edges:
- **High Controllability**: Our technology provides diverse user controls, encompassing text, image, motion, character, and style. This level of controllability is unmatched by competitors
- **High Resolution Generation**: Our technology supports high-generation resolutions, reaching up to 2K resolution
- **Complex Motion**: Our video generation model manages to generate complex motions include scenarios like “teddy bear riding a bicycle”

EAS 04 Collaborative and Personalized Digital Twin Platform for Smart Facility Operation Management
Principal Investigator | Prof. Jack CHENG
Technology Readiness Level | TRL 5 IP status | Patented

Introducing our groundbreaking Collaborative and Personalized Digital Twin Platform for Smart Facility Operation Management.

It integrates 3D digital environments and real-time sensing data, enabling predictive decision-making and optimization. This innovative platform disrupts facility management by:
- Streamlining operations through real-time asset management and conditions monitoring
- Empowering informed decision-making for built asset stakeholders
- Enhancing efficiency and productivity while reducing costs
- Promoting environmental protection and social well-being through optimized energy usage and occupant interactions

Key Technology Edges:
- Lightweight & standardized digital twin platform for 30-40% faster BIM-based digital twin creation & management
- AIoT-based ESG analytics and LLM-embedded robotic virtual assistants for 20-30% more efficient FM
- Efficient and scalable integration of AIoT and updating of digital twin models
- BIM-Blockchain-enabled common data environment collaboration framework based on open standards for secure & personalized FM
EAS 05 Efficient Inference Accelerator for Large AI Model

Principal Investigator | Prof. Tim CHENG

Technology Readiness Level | TRL 4
IP status | Patented

We offer an inference accelerator designed for large-scale AI models, leveraging a cutting-edge application-algorithm-hardware co-design platform and state-of-the-art compute-in-memory technology.

Our solution is specifically tailored to deliver highly efficient and power-optimized computing solutions for transformer-based models such as computer vision, bird eye view (BEV), large language models (LLMs) and AI-generated content (AIGC).

Key Technology Edges:
- Customized AI hardware design using application-algorithm-hardware co-design platform
- Digital Compute-In-Memory technology for high power efficiency AI computing
- Compression technology specifically designed for transformer-based large AI models

Potential Applications
- Artificial Intelligence
- Robotics
- Electronics and Semiconductors
- Information Technology, Communications and Software Services

Applicable Industries
- Research tool / Edu-tech
- Information Technology, Communications and Software Services
- Education, Research, and Professional Services

EAS 06 Biomimetic Olfactory Chips Based on Large-Scale Monolithically Integrated Nanotube Sensor Arrays

Principal Investigator | Prof. Zhiyong FAN

Technology Readiness Level | TRL 6
IP status | Patented

- Gas/odor sensors with high performance and high reliability with the up-scalable processes to manufacture
- Smart gas/odor sensor systems distinguish various kinds of odors
- Wide-range array of applications, including food, environmental, medical, and industrial process control

Key Technology Edges:
- The olfactory chip offers high sensitivity to various gases with excellent distinguishability for mixed gases
- Realtime analysis for mixture gases with novel machine learning algorithms
- Small form Factor: monolithic sensor array (from 3x3 to 10x10, 100x100 pixels) in a tiny area (5mm X 5mm)

Potential Applications
- Sensor
- Semiconductor
- Biomedical, Healthcare and Food

Applicable Industries
- Electronics and Semiconductors
- Information Technology, Communications and Software Services

EAS 07 Middleware for Quantum Computers and Simulators

Principal Investigator | Prof. Gyuboong JO

Technology Readiness Level | TRL 3
IP status | Patented

The market has been lacking comprehensive middleware solutions for quantum technologies, with major players such as IBM and Google keeping their middleware proprietary. QUANTier is actively addressing this gap by developing an advanced software stack capable of connecting users to quantum devices such as quantum computers and simulators. By doing so, QUANTier aims to create an open and inclusive ecosystem that fosters the development of quantum hardware and algorithms, unlocking new opportunities in the field of quantum computing.

Key Technology Edges:
- Provide labs with an all-in-one solution for the lab control
- Connect the research labs and hardware companies to external users
- First comprehensive middleware company in the quantum computing market

Potential Applications
- Quantum computing
- Research tool / Edu-tech
- Information Technology, Communications and Software Services
- Education, Research, and Professional Services

EAS 08 Photo-Aligned Multi-Domain Vertical Alignment LCD for Cost Effective Mass Production with Existing Equipment

Principal Investigator | Prof. Hoi Sing KWOK

Technology Readiness Level | TRL 8
IP status | Patented

The technology offers a method of using azo dye for photorealignment using blue light with viscosity modifiers optimizing the coating solution, allowing the manufacturer to achieve an efficient and cost effective way of LCD mass production using existing equipment.

Key Technology Edges:
- Patented advance material for photo-alignment to break foreign country material monopoly
- Patented LED light exposure system much cheaper than conventional photo-alignment exposure system
- Easy to implement multi-domain manufacturing process suitable for all existing LCD production lines

Potential Applications
- To Produce Unique All Viewing Angle, High Contrast LCD That Can Replace All Existing Black and White Passive LCDs in the Market
- To Enter the Active TFT LCD (TV or Monitor) Market with Strong Competitiveness

Applicable Industries
- Manufacturing and Engineering
EAS 09 An Integrative System for food 3D Printing and Multi-Level Cooking for Making Personalized Meals with Ease
Principal Investigator | Prof. Mitch Li
Technology Readiness Level | TRL 8
IP status | Patented

Creates personalized meals using smart 3D printing and multi-level cooking, including an ultrafast infrared cooker and selective laser cooking for texture and flavor customization while retaining nutrition.

Key Technology Edges:
- **Multi-Level Cooking with Nano Materials**: Experience fast and efficient cooking and sterilisation without the need for human labor. Our patented world’s first commercialised real-time print and cook device utilizes nano materials to enable multi-level radiative cooking, ensuring precise temperature control and enhanced food safety
- **Laser Cooking for Selective Cooking and Texture Creation**: Experience a new level of culinary creativity with laser cooking. This cutting-edge feature enables the selection of specific cooking areas and temperature-sensitive regions, resulting in custom textures like crispiness. Say goodbye to traditional cooking limitations and embrace a world of endless possibilities
- **AI-Generated Food Design Process**: Unleash the power of AI-generated food design. Our advanced algorithm translates text into intricate printing patterns, allowing for the creation of endless possibilities in food shapes and structures while retaining their integrity. Further integration with AI Nutrition Tracking Platform seamlessly connects our Smart 3D Food Printing system with an AI nutrition tracking platform. Analyze personal diet habits and preferences to recommend and prepare personalized food snacks that cater to individual needs, promoting optimal health and well-being

EAS 11 Building the Future: Harnessing Technology’s Potential to Transform Construction
Principal Investigator | Dr. Haobo LIANG
Technology Readiness Level | TRL 7
IP status | Patented

Combining AI, IoT, 5G technologies, and robotics, we are collaborating to develop cutting-edge robotics and autonomous systems for construction industries.

Highlights include:
- Construction digitalization, enhancing efficiency, quality, and safety
- Construction IoT, driving connectivity and data-driven decision-making
- Construction robotics, revolutionizing processes and productivity
- Operational efficiency: Streamlining construction processes with the integration of robotics technology

Key Technology Edges:
- **Expertise and Innovation**: We have a team of experts with specialized knowledge and experience in the field of construction robotics. This expertise could enable us to develop innovative solutions that meet the specific needs of the construction industry
- **Partnerships and Collaborations**: We have already established partnerships and collaborations with industry stakeholders, such as construction companies and academic institutions. These partnerships could provide access to expertise and resources that could help us to develop and commercialize our products and services
- **Customization and Flexibility**: We offer customized solutions that are tailored to the specific needs of customers. By providing flexible solutions that can be adapted to different project requirements, we could establish a reputation for responsiveness and customer service, which could help to build loyalty and drive growth over time

EAS 12 ezpie: the Ultimate Platform to Unlock Value from Data
Principal Investigator | Prof. Mengqian LU
Technology Readiness Level | TRL 7
IP status | Patent in Progress

One-stop solution to unlock data value by optimally matching tasks with professionals in a secure, functional and AI-empowered environment.

Key Technology Edges:
- Proprietary dynamic pricing and personalized recommendation system that can optimally match data with experts to maximize mutual value proposition at an online marketplace
- Build-in web3.0 online workstation that allows experts to securely work on data-related projects with maximum data security allowing for versatile collaborations
- Generative AI-empowered tools that assist task posting, management and data visualization, making ezpie a marketplace where data, technology, and art meet

EAS 13 Agile Executive Terminal for Robots
Principal Investigator | Prof. Yajing SHEN
Technology Readiness Level | TRL 7
IP status | Patent in Progress

The development of a tactile sensor comparable to the human fingertip is of paramount importance for robotics.

Our project team previously proposed a flexible tactile force sensing solution based on the Hallbach magnetic array in the top robotics journal Science Robotics. This technology achieved precise tactile feedback comparable to human fingertips for the first time, decoupling normal and tangential forces, achieving ultra-high resolution, and possessing characteristics such as small size and low cost. On this basis, we have conducted in-depth research development and technology iteration in terms of high-precision measurement of multi-dimensional forces, product durability and communication compatibility. It now has a foundation for industrialization and has applied for multiple patent protections.

Key Technology Edges:
- **High resolution**: This technology achieved precise tactile feedback comparable to human fingertips for the first time, decoupling normal and tangential forces, and achieving ultra-high resolution
- **High dynamic**: Through structural design and corresponding force decoupling algorithm, the sensor can achieve real-time highly dynamic force detection and feedback, greatly reducing the need for computing power
- **Low cost**: Our sensor is simple and suitable for mass manufacturing, and the cost and selling price are far lower than similar products with similar performance. Similar products with similar performance
Physics-guided AI & Intelligent Satellite-empowered Information System and SaaS platform

Principal Investigator: Prof. Hui SU
Technology Readiness Level: TRL 7
IP status: Patent in progress

Experience the future of data analytics with our cutting-edge technology combining physics-guided AI and intelligent satellite capabilities. Highlights include:

- Timely and scalable remote sensing data from a multimodal satellite constellation
- Proprietary physics-guided AI algorithms for automatic data-to-insights generation
- Streamlined end-to-end solutions for various domains through a cloud-based SaaS platform

Key Technology Edges:

- Multimodal satellite constellation and on board AI intelligence provides timely, feature-rich and scalable remote sensing data
- Proprietary physics-guided AI algorithms enable automatic data to insights generation for better decision making
- End-to-end streamlined applications for multiple domains delivered through cloud based SaaS platform

Electronic Design Automation (EDA) for Deep Learning Accelerator Design

Principal Investigator: Prof. Fengbin TU
Technology Readiness Level: TRL 6

Design automation and optimization for high-energy efficiency, high-performance deep learning accelerator

- Algorithm-Hardware co-design and co-optimization
- Compiler-driving NAS-DSE
- Mix granularity of simulation and modeling

Key Technology Edges:

- Reduce architecture design cycle by about 80%
- Significantly reduced architecture design resources required by 80%–90%
- Improved IC power, performance, and area ratio (PPA) by ~20%

Potential Applications: Artificial Intelligence, Electronics and Semiconductors
EAS 18 Towards Carbon Neutral Cities and Countryside: Smart Colourful Integrated Photovoltaic System

Principal Investigator | Prof. Changying XIANG
Technology Readiness Level | TRL 7 | IP status | Patented

By combining high-efficiency colored photovoltaic and translucent photovoltaic materials into the building’s skin, we work towards the zero-carbon transition of buildings and support the city’s carbon neutrality plans.

We provide overall solutions and customized smart photovoltaic building integration systems to provide clean, equal and smart solar energy to all residents, so that every building in the city can take advantage of clean and smart solar energy.

Key Technology Edges:
- High performance color BIPV material
- High-performance translucent photovoltaic windows and curtain walls
- Smart BIPV energy management system

Potential Applications
- Smart Cities
- Building/Structural materials
- Energy, Environmental and Utilities

Applicable Industries
- Smart Cities
- Building/Structural materials
- Energy, Environmental and Utilities

EAS 19 Haptic Sensors for Future Human-Robot Interaction

Principal Investigator | Prof. Hongyu YU
Technology Readiness Level | TRL 6 | IP status | Patented

Our cutting-edge technology revolutionizes human-robot interaction by seamlessly integrating vision, RF, and haptic sensing functions. Highlights include:
- High-performance, cost-effective haptic sensor skin for humanoid robots
- Fusion of vision, RF, and haptic sensors for practical cooperation
- Robust tactile sensors for human-like manipulation
- Embedded AI for understanding and enhancing social interaction between humans and robots

Key Technology Edges:
- A full body, flexible haptic sensor skin for humanoid robots with low cost and high performance
- Fusion of vision, RF, and haptic sensors for full-scale effective human-robot interaction and cooperation
- Robust tactile sensors for dexterous manipulation
- Embedded AI to understand the gathered information from the sensing system for future social interaction between humans and robots

Potential Applications
- Sensor
- Robotics
- Manufacturing and Engineering
- Electronics and Semiconductors

Applicable Industries
- Sensor
- Robotics
- Manufacturing and Engineering
- Electronics and Semiconductors

EAS 20 High-performance Specialized Digital Sensor Chip for IoE Era

Principal Investigator | Prof. George YUAN
Technology Readiness Level | TRL 8 | IP status | Patented

AtomSemi is a dynamic fabless semiconductor company that is working to revolutionize the IoT landscape with its high-performance, integrated digital sensing chips.

Designed specifically for consumer and industrial IoT devices, our chips empower businesses to unlock the full potential of a connected world. At AtomSemi, we integrate the full signal chain into a single semiconductor chip capable of meeting the highest requirements. By integrating the signal chain into a single chip, users can bring new functionalities to applications where space is constrained. As such AtomSemi’s chips are a perfect fit for wearables, consumer electronics, industrial electronics, smart homes, and the broader IoT field.

Key Technology Edges:
- Higher level of integration offering smaller form factors for sensing solutions
- Ultra low power consumption enabling IoT applications
- High precision and unmatched stability, enabling high reliability

Potential Applications
- 3rd Generation Semiconductor
- Semiconductor
- Electronics and Semiconductors
- Manufacturing and Engineering

Applicable Industries
- 3rd Generation Semiconductor
- Semiconductor
- Electronics and Semiconductors
- Manufacturing and Engineering

EAS 22 Next-Generation Financial Indexing with Artificial Intelligence

Principal Investigator | Prof. Chao HE
Technology Readiness Level | TRL 8 | IP status | Patented

At AIVI, we leverage artificial intelligence to empower the next generation of intelligent indexing.

We use advanced algorithms, machine learning, and natural language processing to analyze and interpret vast amounts of complex data with remarkable speed and precision. By automating the process of index construction, AI can capture market trends, identify emerging sectors, assess impacts of adverse events, and efficiently reflect market dynamics in real time.

Key Technology Edges:
- Unified analytical framework seamlessly combines traditional fundamental and market data with alternative data, making quantified analysis and interpretation of unstructured data possible
- Industry leading natural language processing (NLP) AI models tailored for financial analysis provide the high accuracy, reliability, and explainability that are crucial for financial applications
- More dynamic, efficient, and predictive financial indexing by injecting AI analyzed insights from news and social big data

Potential Applications
- Fintech
- Artificial Intelligent
- Finance and Insurance
- Information Technology, Communications and Software Services

Applicable Industries
- Fintech
- Artificial Intelligent
- Finance and Insurance
- Information Technology, Communications and Software Services
EAS 23 Innovative Full-Color Micro-LED Micro-Display: A Revolutionary Technology for AR/VR industry

Principal Investigator: Prof. Wing Cheung CHONG
Technology Readiness Level: TRL 7
IP status: Patented

The technology offers high-brightness color images with low power consumption, surpassing other micro-display technologies. By combining a high-brightness light source with an optical waveguide, a new AR glasses experience can be achieved.

Key Technology Edges:
- Achieving full-color display on a single chip while also setting new records for brightness, PPI, and size
- Minimizing the optical module together with the whole display system
- Large-size wafer bonding technology & 100% semiconductor process

Potential Applications
- Display Technologies
- Electronics and Semiconductors

Applicable Industries
- Communications
- Information Technology, Communications and Software Services

EAS 24 AINIC: A Streamlined, Scalable, and High-Performance RDMA NIC for AI Clusters

Principal Investigator: Prof. Kai CHEN
Technology Readiness Level: TRL 3

High-speed networking is increasingly important for efficient training of AI models, particularly for those large language models trained on tens of thousands of GPUs.

However, current high-speed networking technology used in AI clusters, RDMA, is inherited from general datacenter scenarios. It leverages complex yet general design and integrates redundant functionalities to fit those wide-ranging and flexible demands. Instead, we find some deterministic characteristics both in AI clusters and AI workloads. These insights inspire us to redesign RDMA, simplify the transport, remove unused functionalities, and build a streamlined, scalable, and high-performance RDMA NICs dedicated for AI clusters.

Key Technology Edges:
- **Streamlined:** Reduce the design complexity, which decreases the chip area, facilitating expansion and integration, and lowers development difficulty and failure rates
- **Scalable:** Scalable and modular IP design helps improve the NIC bandwidth by realizing multiple processing units or enhance the GPU-to-GPU bandwidth by realizing multiple on-chip NIC modules
- **High-Performance:** Provide superior network services, including ultra-high bandwidth, low tail latency, large-scale communication, and user-friendly verbs

Potential Applications
- Artificial Intelligent
- Information Technology, Communications and Software Services

Applicable Industries
- Electronics and Semiconductors

A Time- and Energy-Efficient Ising Computer for Portfolio Optimization and Risk Management

Principal Investigator: Prof. Qiming SHAO
Technology Readiness Level: TRL 8
IP status: Patented

Our project utilizes Voltage-Controlled Magnetic Anisotropy Magnetic Tunnel Junctions (VCMA-MTJs) technology to create a time- and energy-efficient Ising computer for portfolio optimization and risk management.

The Ising model is adept at solving complex optimization problems by mapping multifacted relationships within a magnetic lattice. By applying this model, our Ising computer will provide faster and more reliable solutions for portfolio optimization and risk management than conventional computing methods. The unique advantage of VCMA-MTJ technology is its ultra-low energy consumption and rapid operation speed. By controlling magnetic states with voltage, we can minimize the energy input required for the Ising system to perform computations. Our project promises to deliver a transformative tool for financial analysts and investors, enabling them to make more informed decisions by evaluating risk and reward scenarios with unprecedented precision and speed.

Key Technology Edges:
- **Revolutionary Computational Speed for Optimization Problems**
- **Unmatched Energy Efficiency & Cost**
- **First-Mover Advantage with Disruptive Application**

Potential Applications
- Fintech
- Smart Cities
- Finance and Insurance

Applicable Industries
- Information Technology, Communications and Software Services
EAS 27 AI-Blockchain Enabled Decentralized Art Title, Asset Authentication & Management Platform

Principal Investigator | Dr. Daniel CHUN | Technology Readiness Level | TRL 7 | IP status | Patented

The art industry is focusing on enabling the use of digital technologies to support both title and intellectual property management. This digital platform follows the new ART ID Standard (www.artiststandard.org) and will engage the use of blockchain technologies and W3C approved Decentralized ID (DID: ART) implementation. The AI-enabled features allows for smart categorization to support valuations and automatic text curation based on image and text analysis which provides high productivity. We have received support from Infineon Secora chipsets and NFCs for developing our PoC projects – and these chipsets are used of creating and storing the blockchain / DID addresses.

Key Technology Edges:
- Blockchain: Blockchain technology can be used to create a decentralized and transparent system for managing art assets, titles, and ownership. It can ensure secure and tamper-proof transactions and provide a permanent record of ownership and provenance
- Smart Contracts: Smart contracts can be used to automate the transfer of ownership and manage the terms of agreements between parties. They can be used to enforce rules and regulations and ensure compliance with legal requirements
- AI and Machine Learning: AI and machine learning can be used to analyze and classify art assets, authenticate artworks, and provide valuations based on market trends and historical data. They can also be used to generate new artworks and enhance the user experience

Potential Applications
- Art and Philately
- Real World Asset / FinTech
- Information Technology, Communications and Software Services
- Finance and Insurance

Potential Industries
- Artificial Intelligent
- Information Technology, Communications and Software Services
- Finance and Insurance

EAS 28 Human-friendly Miniature Autonomous Blimp (UST-MAB)

Principal Investigator | Prof. Fumin ZHANG | Technology Readiness Level | TRL 6

Discover the future of indoor aerial robots with our groundbreaking UST-MAB technology.

Designed to revolutionize human-robot interaction, the UST-MAB offers a range of innovative features:
- Enhanced safety: Providing a highly secure environment for human-robot interaction, ensuring peace of mind in indoor settings
- Extended operation time: With an impressive maximum operating time of up to 6 hours, the UST-MAB offers exceptional endurance for prolonged missions
- Versatile control systems: The advanced control systems developed for the UST-MAB can be replicated for marine robots, expanding the application areas for this cutting-edge technology

Key Technology Edges:
- Provide a highly secure environment for human-robot interaction
- Extremely long operating time (maximum operating time can be up to 6 hours)
- Designed control systems can be replicated for marine robots

Potential Applications
- Robotics
- Defect Inspection / Monitoring
- Information Technology, Communications and Software Services
- Education, Research, and Professional Services

Potential Industries
- Artificial Intelligent
- Data Science
- Information Technology, Communications and Software Services
- Finance and Insurance

EAS 29 Automated Testing Technologies for Deep Learning Systems

Principal Investigator | Prof. Shing-Chi CHEUNG | Technology Readiness Level | TRL 6

Automated testing technologies that reveal the unreliable inferences produced by deep learning systems and provide actionable advice to facilitate the fixing of such unreliability.

Key Technology Edges:
- Full support of test automation
- Outstanding effectiveness and efficiency
- Applicable to diverse deep-learning applications

Potential Applications
- Artificial Intelligent
- Information Technology, Communications and Software Services

Potential Industries
- Information Technology, Communications and Software Services
- Finance and Insurance

EAS 30 Practical Accelerator for Fully Homomorphic Encryption with a Heterogeneous Architecture

Principal Investigator | Prof. Kai CHEN | Technology Readiness Level | TRL 4

Fully Homomorphic Encryption (FHE) is a promising technology to enable privacy-preserving computations direct over encrypted data. However, current software FHE solutions suffer 4-5 orders of magnitudes slowdown compared to plaintexts computation. We design a practical accelerator to improve the computation efficiency of FHE by 3-4 orders of magnitudes. Our accelerator is the first to adopt a heterogeneous architecture, similar to ARM big.LITTLE technology, to achieve optimal performance for different kinds of FHE workloads with a practical chip area.

Key Technology Edges:
- Heterogeneous hardware architecture to support both shallow (such as matrix computation, DB query, etc.) and deep FHE (such as data analytics, AI inference, etc.) workloads
- Software/hardware co-design to fully release the power of heterogeneous architecture by analyzing the application and automatically generating the most appropriate scheduling policies
- Integration with various mainstream computation frameworks to support diversity of application scenarios

Potential Applications
- Artificial Intelligent
- Data Science
- Information Technology, Communications and Software Services
- Finance and Insurance
Artificial AI-generated Blockchain System for Legal Term Analysis

Our technology analyzes legal contract terms and automatically generates blockchain smart contract code. The system’s adherence to the latest legal regulations ensures compliance, while its adaptability and scalability make it versatile for various contract industries such as automotive, aerospace, consumer electronics, healthcare, and environmental monitoring.

Key Technology Edges:

- **Integrating heterogenous computing resources and optimizing supply-demand matching**
- **Trusted computing for privacy and security of data and model**
- **Sustainable market models benefiting both demanders and suppliers**

Potential Applications

- Stand-alone and batteryless: Our sensors operate without the need for external power sources, reducing costs and maintenance requirements
- High reliability: Built on 10+ years of research and backed by 22 USA/China invention patents, our sensors offer exceptional performance and longevity
- Data-driven decision-making: Our sensor technology enables improved transportation safety, reduced operation costs, and supports data-driven decision-making

Key Technology Edges:

- **WIRELESS, self-powered, battery-less operation, long service time and free of maintenance**
- **SMALL-size and fit-and-forget features, low fabrication and installation cost**
- **System-level solution**

Applicable Industries

- Energy Harvesting
- Flexible Electronics
- Transportation and Logistics
- Manufacturing and Engineering

Potential Applications

- System-level solution
- **SMALL-size and fit-and-forget features, low fabrication and installation cost**
- **WIRELESS, self-powered, battery-less operation, long service time and free of maintenance**
- **SYSTEM-size and fit-and-forget features, low fabrication and installation cost**
- **System-level solution**
EAS 35 Distributed AI Heterogeneous Cloud
Principal Investigator | Prof. Yang WANG
Technology Readiness Level | TRL 3 IP status | Patented

Solve the current problems of distributed arithmetic network, complete the elastic allocation of computing resources in support of AI model training and reasoning, and improve the resource utilization of the system. Build a distributed system to manage multiple training servers, especially high-performance computing servers with GPUs, pool the computing resources, to make a "GPU cloud".

Key Technology Edges:
- Integration of AI and Blockchain: This system combines artificial intelligence with blockchain technology to expand the application possibilities of blockchain
- Consensus and Consistency: The introduction of validation nodes to apply predefined consensus algorithms ensures the consistency of initial computation results
- On-Chain AI Computation

EAS 36 FMLoCo: Foundation Model based Logistics Copilot
Principal Investigator | Prof. Yike GUO
Technology Readiness Level | TRL 6

Our mission is to create a logistics co-pilot powered by large-scale foundational models and multi-agent intelligence

This system will facilitate the automatic recognition and generation of Bills of Lading (BL), thereby enabling seamless automatic processing. FMLoCo is meticulously crafted to substantially ease the load of manual labor associated with demanding and repetitive tasks, including BL entry, verification, and complex procedural work. The result is a streamlined and expedited logistics process that opens up fresh business opportunities on a global scale.

Key Technology Edges:
- Multilingual & multimode foundation model, pretrained and finetuned on the largest H800 AI cluster in HK
- Logistics specific optimization based on 90M logistic documents
- Tie-1 customer design-in with GMG and SinoTrans (Top-5 logistic company in the world)

EAS 37 Segmenting Consumer Location-Product Preferences for Assortment Localization
Principal Investigator | Prof. Jia LIU
Technology Readiness Level | TRL 5 IP status | Patented

The dual Poisson Dynamic System with Multilayer Factorization (dPDS-MF) is a method for managing multiple stores in the same marketplace.

The dPDS-MF utilizes panel data on product assortments and consumer purchases to profile consumer segments. It analyzes relationships between store locations, and estimate product preferences. It employs a Bayesian nonparametric prior and an efficient MCMC inference algorithm for large-scale data. The method is applied to the retail vending market in major Japanese train stations, demonstrating its effectiveness in optimizing vending location decisions and location-specific assortments. Additionally, the dPDS-MF can be combined with a choice model to efficiently determine localized assortments. Compared to benchmark strategies, the proposed assortment strategy improves expected revenue by up to 30% and provides more meaningful localized assortment decisions.

Key Technology Edges:
- Track sales dynamics across locations and products
- Identify opportunities for new vending locations
- Determine the product assortments per vending location

EAS 39 FinSent - AI-powered Text Analysis for Informed Investment Decisions
Principal Investigator | Prof. Allen HUANG
Technology Readiness Level | TRL 3

FinSent is not just a financial analysis tool; it’s a game-changer powered by FinBERT, a finance-domain specialized NLP model from HKUST Business School that outperforms GPT-4 by 15.2%, with up to 91% sentiment analysis accuracy and an impressive 96% ESG classification accuracy.

Experience a distinctive three-dimensional perspective as it meticulously analyzes sentiments from the company, media, and public viewpoints over a period of more than 20 years. Imagine a financial dashboard that doesn’t just show numbers but reveals the emotions behind them, guiding investors with a better understanding.

Key Technology Edges:
- Cutting-Edge NLP Technology Powered by FinBERT Language Model
- Comprehensive Sentiment Analysis and Report Text Highlights
- Web-Based Accessibility on Any Device
EAS 40 Micro-second Response Ferroelectric Liquid Crystal (FLC) Light Modulator for Time-Sequential-Multiplexed 3D, Vivid-Color Display, and Wavelength Selective Switch (WSS)

Principal Investigator | Prof. Hoi-Sing KWOK
Technology Readiness Level | TRL 8
IP status | Patented

Field-sequential high resolution displays with high refresh rates are in demand for emerging technologies such as VR, AR, naked-eye 3D, and HUD displays.

To achieve a three-color RGB display, one pixel is divided into three small red, green, and blue pixels. Field-sequential display is a time-sequential multi-pixel multiplexing technology implemented through fast refresh in time sequence. Liquid crystal display technology has huge potential in the field of field sequential display, but it requires the response speed of the liquid crystal to be lower than 1 ms. Ferroelectric liquid crystal (FLC) has micro-second-level response speed and has attracted a lot of attention. DHFLC display technology is one of the most suitable display technologies for realizing high-resolution field-sequential display. Because of its fast response speed, voltage-controlled continuous grayscale, low operating voltage, and no edge field effect, DHFLC can support refresh speed within 2 kHz, high-resolution display with high pixel density.

Key Technology Edges:
- Compatible with existing production technology by testing on the G4.5 production line as a drop-in replacement of IPS LCD
- Self-developed and patented FLC materials that can achieve kg-level mass production
- Balanced electro-optical performance, fast response speed, high transmittance, low birefringence, large phase modulation depth

Potential Applications | Display Technologies, Communications Technology, Electronics and Semiconductors, Information Technology, Communications and Software Services

Applicable Industries

EAS 41 Mask-free Material Deposition on Arbitrary Substrate by Direct Laser Writing

Principal Investigator | Prof. Sen YANG
Technology Readiness Level | TRL 5
IP status | Patented

The photon induced material deposition method uses a focused laser to trigger local light-assisted chemical reactions and form patterned material.

The technology enables additive manufacturing of electronics with nanoscale features on various substrates.

Key Technology Edges:
- Low cost, single-step, customized and fast additive manufacturing of functional material structures with nanoscale resolution and high performance
- The deposition method applies to a wide range of conductor, insulator and semiconductor on various substrates, whether stiff or flexible, transparent or opaque
- The material used for fabrication is environmentally friendly, nonhazardous and sustainable

Potential Applications | Manufacturing Technology/Process Enhancement, Semiconductor, Manufacturing and Engineering, Education, Research, and Professional Services

Applicable Industries

Material, Energy and Sustainability (MES)

MES01 SAN® Process - A Paradigm - Shift Sewage Treatment Technology with a 70% Reduction of Sludge (Prof. Guanghao CHEN)
P.24
MES02 Smart Polymer Processing Plant (S-P3) - Open Collaborative Intelligent Platform (Prof. Furong GAO)
P.24
MES03 Strength in Thinness: Ultra-Strong Polymer Nanofilm for Cutting-Edge Applications (Prof. Ping GAO)
P.25
MES04 Revolutionizing Energy Storage: Tube-transport-Inspired All-solid-state Electrolytes for Li-based Batteries (Prof. Younseob KIM)
P.26
MES05 On-Site Microspatial Detection for Rapid and Accurate Waste Efluent Analysis (Prof. Leung Yuk Frank LAM, Prof. Cindy Ka Sin LAM)
P.26
MES06 Time-reversal Diagnostic for the Health Monitoring of Pressurized Pipelines (Prof. Moez LOUATI)
P.26
MES07 Cementless Lightweight Materials from CO2-sequestering Waste Mixtures for Sustainable Construction (Prof. Charles Whang Wai NG)
P.27
MES08 Acoustic Metamaterials: Next-Generation Noise Control and Audio Solution (Prof. Ping SHENG)
P.27
MES09 Green-House-Gas-Free Elastomeric Cooling/ Heating Technology - Materials and Devices (Prof. Qiuping SUN)
P.28
MES10 Multi-functional Green Coating Materials for Sustainable Glazing Surface (Prof. Jingjie YANG)
P.28
MES11 Material Innovations for a Sustainable World (Prof. Jingjie YANG)
P.29
MES12 Safe and Affordable Energy Storage enabled by Self-organized Metallic Nanostructure (Prof. Qingping CHEN)
P.29
MES13 Energy Conversion from Waste Heat to Electricity by Giant Pyroelectric Effect (Prof. Xiao CHEN)
P.30
MES14 Redefining Wearables: Skin Patch Sweat Sensor for Non-invasive & Continuous Health Monitoring (Prof. Ping GAO)
P.30
MES15 Smart EcoClean Matrix (Prof. Wei HAN)
P.31
MES16 A Solar Control Film for Glass Window, that Blocks Heat and UV While Maintaining High Visibility and RF/WiFi Transmission (Prof. Baoling HUANG)
P.31
MES17 Nano Positioning Stage for Applications under Extreme Environmental Conditions (Prof. Berthold JAECK)
P.32
MES18 Epitaxial Growth of Mixed-Dimensional Heterostructures for High-Efficient Powerphotodetector (Prof. Zhengtang LUO)
P.32
MES19 Branching in Instant Tissue Adhesives for Softer Mechanical Properties (Prof. Zhentang LUO)
P.33
MES20 Green Antifouling Solutions Based on Patented Butenolide Technology (Prof. Piyuan QIAN)
P.33
MES21 High-Performance Polymer-Based Quasi-Solid Electrolytes for Commercial High-Energy-Density Batteries (Prof. Minhua SHAO)
P.34
MES22 High-Energy, Safe Solid-state Lithium Batteries (Prof. Minhua SHAO)
P.34
MES23 Next-Generation Lithium Metal Batteries with Ultra-High Nickel Cathode Material (Prof. Minhua SHAO)
P.35
MES24 Next-Generation Lithium CSD Electrode and All-solid-state Electrolyte for Commercial High-Energy-Density Batteries (Prof. Minhua SHAO)
P.35
MES25 High Performance and Long Durability Pd@Pt Core-Shell Fuel Cell Catalysts (Prof. Minhua SHAO)
P.36
MES26 Microcapsule Technologies for High-Value-added Industrial Adhesives (Prof. Jingjie YANG)
P.36
MES27 Zero Carbon GelSoap for a Healthy and Sustainable Living Style (Prof. King Lun YEUNG)
P.36
MES28 Optical Metamaterials: Radiative Cooling for Zero Energy Thermal Management (Prof. Chongjia LIN)
P.37
Material, Energy and Sustainability (MES)

SANI® Process – A Paradigm – Shift Sewage Treatment Technology with a 70% Reduction of Sludge

Principal Investigator | Prof. Guanghao CHEN

Technology Readiness Level | TRL 7 | IP status | Patented

SANI® process was developed for the removal of organics and nitrogen with sludge minimization in the treatment of saline sewage generated from seawater used for toilet flushing or salt water intrusion.

Key Technology Edges:
- Reduces 60%-70% of biological sludge production
- Saves 30%-40% of space
- Saves 20%-30% of energy consumption and CO₂ emission

Smart Polymer Processing Plant (S-P3) - Open Collaborative Intelligent Platform

Principal Investigator | Prof. Furong GAO

Technology Readiness Level | TRL 7 | IP status | Patented

The next-generation intelligent injection molding with real-time material and quality monitoring using breakthrough sensors, award-winning control algorithms for superior precision, and a dedicated big-data system for intelligent collaboration.

Key Technology Edges:
- Breakthrough and world first sensor for capturing material and quality changes on line
- Award winning control algorithms for superior precision for injection molding
- Dedicated big-data open system for collaborative intelligent molding

Strength in Thinness: Ultra-Strong Polymer Nanofilm for Cutting-Edge Applications

Principal Investigator | Prof. Ping GAO

Technology Readiness Level | TRL 7 | IP status | Patented

Ultrathin polymer nanofilm, 25 times stronger than steel with the same mass, transparent, gas-permeable and adjustable porous, ideal for advanced energy separators, wearables, biomedical applications and desalination.

Key Technology Edges:
- Ultrathin: 20 nanometers or less than one thousandth the thickness of a hair strand
- High strength: 25 times stronger than steel with the same mass
- Formulation improvement to reduce cost

Revolutionizing Energy Storage: Tube transport-Inspired All-solid-state Electrolytes for Li-based Batteries

Principal Investigator | Prof. Yoonseob KIM

Technology Readiness Level | TRL 5 | IP status | Patented

Composite all-solid-state electrolytes selectively transport Li⁺ rapidly and reliably. This technology can enable smaller and lighter Li-based rechargeable batteries.

Key Technology Edges:
- Our electrolytes’ Li⁺ conductivity and transference number outperform liquid electrolytes and sulfides
- These all-solid-state electrolytes are fire-proof and economical in large-scale production
- Prototype coin cell, paired with Li metal anode and LCO cathode, shows a capacity of 150 mAh g⁻¹
Time-reversal Diagnostic for the Health Monitoring of Pressurized Pipelines

Principal Investigator	Prof. Moez LOUATI
Technology Readiness Level | TRL 5
IP status | Patented

The time-reversal diagnostic technology enables a quick and non-disruptive way to identify diverse and multiple defects in pipelines including drainage and potable water mains.

Key Technology Edges:
- The technology uses fast-traveling waves for rapid diagnostic testing, around 1000 times faster than roving sensors
- The TR methodology is non-disruptive and non-intrusive, eliminating service interruption, isolation of mains, and contamination risks
- The technology offers controllable localization resolution and allows for the development of automated and autonomous processes

Potential Applications
- Water supply systems
- Sewage rising mains
- Gas & Oil pipelines

Applicable Industries
- Manufacturing and Engineering

MES 07 Cementless Lightweight Materials from CO₂-Sequestering Waste Mixtures for Sustainable Construction

Principal Investigator	Prof. Charles Wang Wai NG
Technology Readiness Level | TRL 4
IP status | Patented

Construction and household wastes, including plastic waste and food waste, are recycled and reused to produce sustainable construction materials.

Key Technology Edges:
- Minimize the use of carbon-intensive cement and natural aggregates that are typically required for production of construction materials
- Sequestrate carbon dioxide (CO₂) in mixture of wastes to form cementless construction materials
- Enable production of lighter construction materials with different dimensions to improve construction flexibility

Potential Applications
- Produce sustainable and durable materials for construction and earthen structures (e.g., partition walls, pavements, etc.)
- Provide a novel solution to facilitate waste reduction and recycling in the society to achieve sustainable development and carbon neutrality
- Integrated with coating science to provide cooling in surroundings and reduce energy consumption for temperature control

Applicable Industries
- Construction and Property

MES 09 Acoustic Metamaterials: Next-Generation Noise Control and Audio Solution

Principal Investigator	Prof. Ping SHENG
Technology Readiness Level | TRL 8
IP status | Patented

Coupling applied physics with intelligent design, the acoustic metamaterials finely construct tiny artificial structures to achieve optimal noise absorption performance.

Key Technology Edges:
- Low frequency noise absorption capabilities covering broadband frequency as well
- Customization of absorption spectrum
- High-efficiency noise absorption while maintaining High ventilation

Potential Applications
- HVAC Silencer, Acoustic Panel for Building Noise Reduction
- Noise Control Parts for Home or Daily Appliances, E.g. Mobile Phones, Computers, Refrigerator, Etc., Aerospace, Automotive or Boat
- Audio Functional Parts for Hi-Fi and Speech Recognition

Applicable Industries
- Manufacturing and Engineering
MES 10 Green-House-Gas-Free Elastocaloric Cooling/ Heating Technology - Materials and Devices
Principal Investigator | Prof. Qingping SUN
Technology Readiness Level | TRL 4 IP status | Patented

By harvesting the unique phase transformation latent heat of shape memory alloys, the elastocaloric effect is utilized and developed into cooling/heating modules like fridges and air conditioners. This green technology revolutionizes the conventional refrigeration technology that has used harmful refrigerants for decades.

Key Technology Edges:
- Completely avoid the usage of greenhouse gas refrigerants. Use solid shape memory alloys instead
- Save electricity consumption and the related carbon emission by at least 10%
- The cooling core material (shape memory alloy) is a typical smart material and is 100% recyclable

Potential Applications_applicable Industries:
- Fridges
- Air Conditioners
- Homes, Office Rooms, Shopping Malls, Industries
- Anywhere in Need of Cooling
- Energy, Environmental and Utilities

MES 11 Multi-functional Green Coating Materials for Sustainable Glazing Surface
Principal Investigator | Prof. Jinglei YANG
Technology Readiness Level | TRL 6 IP status | Patented

Leveraging cutting-edge in-house polymer graft modification, and encapsulation technology, HKUST has developed multi-functional green coating materials with high photocatalytic performance, anti-reflection and durability for various glazing surfaces, including PV panel, curtain wall, automobile rearview mirror.

Notably its application on PV panel can enhance power generation by 15-20%. In contrast to commercial coating, this technology enables the nanocoating to have a unique inorganic micro-nano hierarchical porous structure inside, while maintaining high transparency and promoting superior photocatalysis under visible light radiation. In addition to glazing surfaces, this coating also can be applied to various building cement or metal surfaces.

Key Technology Edges:
- Efficient photocatalysis: Doping-modified core materials can expand the photoresponse area to visible light and improve photocatalytic performance
- Superior anti-reflection: The unique surface porous core-shell structure makes the coating exhibit extremely high porosity and mechanical durability demanded for practical use, resulting in a low refractive index
- Strong durability: The in-house synthesized organic segment allows the coating to have long-lasting wetting properties and resistance against water

Potential Applications
- Sustainable Glazing Surface
- Including PV panel, curtain wall, automobile rearview mirror
- Potential applications on various buildings cement or metal surfaces
- Energy, Environmental and Utilities
- Manufacturing and Engineering

Potential Applications
- Energy Saving Coatings / Materials
- Sustainable Industrial Adhesives
- Core-shell Materials Technologies
- Energy, Environmental and Utilities

MES 12 Material Innovations for a Sustainable World
Principal Investigator | Prof. Qingping SUN
Technology Readiness Level | TRL 6 IP status | Patented

Quantifiable life cycle analysis with considerations of low energy consumption and low carbon emission has been adopted and developed to innovate green materials and composites that contribute to a sustainable world.

Key Technology Edges:
- Fundamental innovation of materials via controllable interfacial science and engineering
- AI-Robotics empowered high throughput discovery of new materials
- Durable and long-lasting performance, low cost, customizable

Potential Applications
- Energy Saving Coatings / Materials
- Sustainable Industrial Adhesives
- Core-shell Materials Technologies
- Energy, Environmental and Utilities

Potential Applications
- Manufacturing and Engineering

MES 13 Safe and Affordable Energy Storage enabled by Self-organized Metallic Nanostructure
Principal Investigator | Prof. Qing CHEN
Technology Readiness Level | TRL 4 IP status | Patented

Self-organized Metallic Nanostructure are scalable, robust, conductive, highly permeable to fluids, and abundant in functional surface sites. We leverage nanoporous zinc to stabilize zinc anodes during the charging and discharging processes of rechargeable zinc batteries, enabling safer and cheaper alternatives to lithium-ion batteries for stationary energy storage.

Key Technology Edges:
- The battery adopts the mature build of commercial alkaline batteries, ready for applications
- The battery electrolyte has water instead of flammable organics as the solvent for intrinsic safety
- The nanoporous structure can be tailored according to the design of a battery to fulfill its potential

Potential Applications
- Energy Storage
- Energy Efficiency
- Energy, Environmental and Utilities
- Manufacturing and Engineering

Potential Applications
- Manufacturing and Engineering
MES 14 Energy Conversion from Waste Heat to Electricity by Giant Pyroelectric Effect

Principal Investigator | Prof. Xian CHEN
Technology Readiness Level | TRL 5
IP status | Patented

Pyroelectric energy conversion has generated huge interest for their ability to turn waste heat energy to electricity, thereby greatly reduce carbon emissions in the power sector. A series of novel energy materials used for pyroelectric energy conversion with immensely improved performance. In addition, we established a mature material development approach considering both bottom-up lattice design and top-down grain morphology optimization with much broader interests in the field of functional ferroelectric devices.

Key Technology Edges:
- Direct energy conversion: material is an engine
- Conversion by small thermal fluctuations around 100°C – energy harvesting from waste heat
- Solid state energy conversion – clean, simple and compact

Potential Applications Applicable Industries
- Energy Harvesting from Waste Heat
- Energy Efficiency
- Energy, Environmental and Utilities

MES 15 Redefining Wearables: Skin Patch Sweat Sensor for Non-Invasive & Continuous Health Monitoring

Principal Investigator | Prof. Ping GAO
Technology Readiness Level | TRL 6
IP status | Patented

UHMWPE-based nanomembrane skin sensor that detects biomarkers (e.g. hormones, metabolites, proteins) non-invasively and transmits directly to mobile app in real-time for precautionary diagnostics.

Key Technology Edges:
- Ultra-thin (i.e. 1/3000 of human hair), yet having specific tensile strength 25x than stainless steel at the same mass
- Platform material: highly modular biomarker detection with interchangeable biomolecular receptors (i.e. enzymes, MIP, aptamers, etc.)
- Highly porous & breathable (i.e. ~150x faster compared to human sweat secretion rate)

Potential Applications Applicable Industries
- Sensor
- Sport performance
- Biomedical, Healthcare and Food
- Manufacturing and Engineering

MES 16 Smart EcoClean Matrix

Principal Investigator | Prof. Wei HAN
Technology Readiness Level | TRL 7
IP status | Patented

Excessive algal growth poses serious environmental health problems, yet the development of a cost-effective solution for long-term inhibition of algal growth remains a huge challenge. This invention utilizes algidical hydrogels comprising safe and environmentally friendly bioactive ingredients for practical applications in fresh water and sea water. The hydrogels can release oxidizing and cell-permeable algicides in a controlled manner to inhibit algal growth for a long time without adverse effects on aquatic organisms. Their controlled release performances and algidical activities have been verified in laboratories and a 1500 m³ sea water reservoir in Hong Kong. Real-time monitoring equipment effectively provides data to adjust the amount of hydrogel and perform daily water quality testing.

Key Technology Edges:
- 3D structural hydrogel with environmental friendly ingredients achieve slow release effect
- Long term effect can constantly inhibit algae growth in the water body without pollutant introduce to the natural water body
- Intelligently and dynamically adjusted to control the concentration of microorganisms and microalgae in the water body within a safe range for a long time

Potential Applications Applicable Industries
- Water Quality Maintenance
- Environmental protection
- Energy, Environmental and Utilities

MES 17 A Solar Control Film for Glass Window, that Blocks Heat and UV While Maintaining High Visibility and RF/WiFi Transmission

Principal Investigator | Prof. Baoling HUANG
Technology Readiness Level | TRL 4
IP status | Patented

This innovative film effectively moderates the environment to a pleasant temperature by selectively dealing with the solar light and infrared of different spectra and filtering out undesired radiation. Several cooling films for glass windows have been developed for cars, trains and buildings, tailor-designed according to their application scenarios.

Key Technology Edges:
- Effective cooling and comfort: it can block over 80% of near infrared solar energy and the majority of UV exposure
- High visibility: it can achieve similar visual comfort as other Low-E films, by our developed micron-scale manufacturing techniques
- Super-high transmission of microwave (WiFi/RF) for communication: it can significantly reduce film electromagnetic shielding effects, by our novel techniques

Potential Applications Applicable Industries
- Glass windows on cars, trains and buildings
- Construction and Property
- Transportation and Logistics
MES 18 Nano Positioning Stage for Applications under Extreme Environmental Conditions

Principal Investigator | Prof. Berthold JAECK
Technology Readiness Level | TRL 5 | IP status | Patented

Today, advances in artificial intelligence, quantum technologies, and space exploration rest on our ability to fabricate nanometer-sized computer chips and physical components with extreme accuracy. This makes precision positioning devices a cornerstone of today’s high-technology and manufacturing stack. Quano Technologies Ltd. innovates, manufactures, and sells next generation nano positioning devices for technically demanding applications in the high-tech industry and research sector. Our positioning devices use piezoelectric actuation to realize millimeter to centimeter displacements with nanometer accuracy.

Key Technology Edges:
- Reliable operation. Our positioning devices can operate at extreme environmental conditions high and low temperatures and pressures.
- Heat Load Management. Their design affords an efficient heat removal across the positioning device. This is a unique selling point of our technology.
- Mechanical Stability. Our positioning devices have a reinvented structural design that avoids glue joints, resulting in unmatched mechanical stability.

Potential Applications
- Construction of optical and microscopy setups
- Steering, alignment, and focusing of lithography instrumentation

Applicable Industries
- Research Instrumentation
- Semiconductor lithography instrumentation

MES 19 Epitaxial Growth of Mixed-Dimensional Heterostructures for High-Efficient Self-Powered Photodetector

Principal Investigator | Prof. Zhengtang LUO
Technology Readiness Level | TRL 5 | IP status | Patented

The technology offers a controllable epitaxial growth of highly aligned 1D/2D mixed-dimensional heterostructures with an ultraclean interface and defect-free vdW contact, allowing efficient transfer of photogenerated carriers and self-driven behavior with high performance, including high responsivity, high external quantum efficiency, competitive specific detectivity, and rapid response rate.

Key Technology Edges:
- A series of mixed-dimensional heterostructures with ultraclean interface achieved by in-situ synthesis strategy
- The self-powered photodetector exhibits higher energy efficiency, more portability, and flexibility, as well as enhanced safety
- Offer new opportunities to design and fabricate next-generation functional devices with reduced sizes and high densities, further enabling miniaturization and integration opportunities

Potential Applications
- Semiconductor
- Electronics and Semiconductors
- Manufacturing and Engineering

Applicable Industries
- Research Instrumentation
- Semiconductor lithography instrumentation

MES 20 Branching in Instant Tissue Adhesives for Softer Mechanical Properties

Principal Investigator | Prof. Zhengtang LUO
Technology Readiness Level | TRL 4 | IP status | Patented

A tissue adhesive formulation that enables a straightforward branching polymerization method of cyanoacrylate-based tissue adhesives to introduce new properties while maintaining the practical features of these fast-acting, strong adhesives.

Key Technology Edges:
- An adhesive formulation generating branched structure upon application instead of the conventional linear ones
- Soft mechanical properties of the tissue adhesive
- Straightforward method of application that finishes in seconds

Potential Applications
- Medical device
- Biomedical, Healthcare and Food

Applicable Industries
- Anti Fouling
- Coating
- Energy, Environmental and Utilities

MES 21 Green Antifouling Solutions Based on Patented Butenolide Technology

Principal Investigator | Prof. Peiyuan QIAN
Technology Readiness Level | TRL 8 | IP status | Patented

With more than 20 years of innovative and intensive research, David Von Hanseemann Professor of Science and Chair professor Pei-Yuan Qian, a distinguished marine biology scientist at HKUST, discovered and elucidated the property of a novel biodegradable antifouling compound from a marine microbe.

The excellent antifouling efficiency, safe biological profile and green chemical production method of this compound led to the establishment of Ocean Science. Ocean Science aims to become the global premier solution provider and innovator in green antifouling technology; to address the global marine pollution, extra energy consumption and carbon emission issues; and to enhance the national maritime power in the sustainable development of maritime industries.

Key Technology Edges:
- Patent against broad-spectra marine fouling organisms while be safe to other marine organisms
- The molecular structure is simple, allowing the easy production of the compounds
- The chemical synthesis methodology is green of minimal environmental impact and biodegradable in seawater and safe to marine environment.
MES 22 High-Performance Polymer-Based Quasi-Solid Electrolytes for Commercial High-Energy-Density Batteries
Principal Investigator | Prof. Minhua SHAO
Technology Readiness Level | TRL 7
IP status | Patent in Progress

Our groundbreaking technology involves the development of polymer gel electrolytes with exceptional conductivity and safety characteristics through in situ polymerization. This innovation has been successfully implemented in commercial high-loading batteries, addressing critical issues such as graphite exfoliation and silicon pulverization. With its remarkable performance, our technology holds immense potential for commercialization.

Key Technology Edges:
- Compatibility with current commercial electrodes and suitability for high mass loading batteries
- Unique mechanical properties of the quasi-solid electrolyte prevent electrode pulverization, setting it apart from conventional liquid electrolytes
- Elimination of free mobile liquid molecules minimize the risk of battery firing and explosions, especially under harsh conditions

Potential Applications
- Energy Storage
- Energy Efficiency
- Energy, Environmental and Utilities

MES 23 High-Energy, Safe Solid-state Lithium Batteries
Principal Investigator | Prof. Minhua SHAO
Technology Readiness Level | TRL 5
IP status | Patent in Progress

Through the combination of a conversion-type composite cathode, a composite hybrid electrolyte, and a stable Li-metal anode, HKUST research team aims to develop a solid-state battery with an energy density surpassing 400 Wh/kg. It is anticipated that the successful research outcome will have a profound impact on the advancement of next-generation solid-state battery technology and the widespread adoption of electric vehicles.

Key Technology Edges:
- Large-scale synthesis of high-energy cathode materials
- Electrolyte optimization through in-situ polymerization
- Systematic application of optimized cathode materials, solid electrolytes, and lithium hosts to pouch cells

Potential Applications
- Energy Storage
- Energy Efficiency
- Energy, Environmental and Utilities

MES 24 Next-Generation Lithium Metal Batteries with Ultra-High Nickel Cathode Material
Principal Investigator | Prof. Minhua SHAO
Technology Readiness Level | TRL 6
IP status | Patented

The next-generation lithium metal batteries utilizing ultra-high nickel content in the cathode material offer a unique combination of benefits from both the anode and cathode components. These batteries provide higher capacity and energy density while also delivering longer lifespan, making them ideal for applications such as electric aircraft and UAVs. This innovation holds great promise for advancing various energy-related fields.

Key Technology Edges:
- High capacity: 230 mAh/g, high voltage: 4.6V, high cyclability (long lifespan); 90% capacity retention after 500 cycles, high rate capability (fast charge/discharge): 10C discharge capacity; 170mAh/g
- Good potential for low-temperature performance
- The higher the nickel (Ni) content, the higher the capacity and the lower the cost (Cobalt (Co): RMB 600,000/ton; Nickel (Ni): RMB 100,000/ton; Manganese (Mn): RMB 10,000/ton)

Potential Applications
- Energy Storage
- Energy Efficiency
- Energy, Environmental and Utilities

MES 25 High Performance and Long Durability Pd@Pt Core-Shell Fuel Cell Catalysts
Principal Investigator | Prof. Minhua SHAO
Technology Readiness Level | TRL 7
IP status | Patented

This technology enables the conversion of hydrogen’s chemical energy into electricity, generating only water as a byproduct over an extended period. The catalyst utilizes a low amount of platinum and demonstrates superior performance and long-lasting durability.

Key Technology Edges:
- High performance and high power density output
- Long-lasting durability, demonstrating excellent performance in two extreme acceleration tests (DOE Standard)
- Reduced costly platinum usage

Potential Applications
- Energy Storage
- Energy Efficiency
- Energy, Environmental and Utilities
Microcapsule Technologies for High Value-added Industrial Adhesives

Principal Investigator | Prof. Jinglei YANG
Technology Readiness Level | TRL 8 | IP status | Patented

Industrial adhesives are essential for bonding materials in modern manufacturing. They offer advantages over traditional fastening methods and are used across various industries, including automotive, aerospace, electronics, and construction. However, traditional industrial adhesives have uncontrollable curing time, limited temperature and chemical resistance, and pose health/safety and environment concerns. HKUST has developed microcapsule technologies for high-value-added industrial adhesives, with a focus on nurturing nationalized related products, autonomous and controllable technologies, and secure supply chain.

Key Technology Edges:
• High performance-price ratio
• Eco-friendly (low VoC, and waterborne)
• High temperature stability
• Fulfill the urgent need for Domestic Replaceable & Customizable microencapsulation technologies

Potential Applications: High-value-added Industrial Adhesives
Applicable Industries: Energy, Environmental and Utilities
Manufacturing and Engineering

Zero Carbon GelSoap for a Healthy and Sustainable Living Style

Principal Investigator | Prof. King Lun YEUNG
Technology Readiness Level | TRL 8 | IP status | Patented

Silica capsules with prolonged release property is designed to extend the usage period of different types of household, personal hygiene or healthcare products. This unique technology involves the encapsulation of concentrated active ingredients within silica-based capsules. A small amount of the capsule-infused product, when mixed with water, can provide the same functionality as a significantly larger quantity of traditional products, thereby significantly reducing the size and weight of these products, making them more economical and environmentally friendly. Using silica capsule technology, GelSoap has been developed as an alternative environmentally-friendly soap product, and a bundle of related household/personal products is under development.

Key Technology Edges:
• Environmental Impact: The manufacture, transport, and disposal of traditional health and hygiene products pose significant environmental challenges. These products typically include a high percentage of water, making them heavy and bulky. This results in high carbon emissions during transportation and significant storage space. The small size and light weight of our silica capsules can significantly reduce these environmental impacts
• Waste Reduction: Traditional health and hygiene products often lead to packaging and disposable plastic dispenser. Our silica capsules reduce the packaging wastage by reducing its size and reuse eco-friendly dispenser
• Cost saving: The bulk and weight of traditional products lead to high storage and transportation costs. Our silica capsules can revolutionize logistics across the health and hygiene industry by reducing the size and weight

Potential Applications: Personal care products, including hand soaps, shampoos, conditioners, and lotions
Household cleaning products, including surface cleaners, dishwashing liquids, car washing liquid and laundry detergents
Applicable Industries: Energy, Environmental and Utilities
Manufacturing and Engineering

Optical Metamaterials: Radiative Cooling for Zero Energy Thermal Management

Principal Investigator | Prof. Chongjia LIN
Technology Readiness Level | TRL 9 | IP status | Patented

We fabricate nano/micro-engineered surfaces for all-day radiative cooling via high atmospheric mid-infrared emission and strong solar reflection. The surface temperature can be cooled down up to ~10 degrees lower than the ambient air and ~45 degrees lower than the original surface. It provides efficient passive cooling for buildings, outdoor equipments, facilities or products with zero energy consumption. Our products include film and paint. It can be either opaque or transparent and the color can be customized.

Potential Applications: Various constructions: like residential and commercial buildings, storehouses, industrial plants
Various outdoor equipments or facilities: like vehicle, electrical cabinet, container, chemical tank and PV panels
Applicable Industries: Construction and Property
Energy, Environmental and Utilities
Bio-Medical and Healthcare (BMH)

BMH01 Advanced Polymer-Based Therapeutics for Chronic Diseases (Prof. Ying CHAU) P.39

BMH02 AimGel: Supercharging Cell Therapy Production and Development (Prof. Ying CHAU) P.39

BMH03 High-Throughput AI-Based Screening Platform for Drug Discovery (Prof. Tom CHEUNG) P.40

BMH04 Secretion-Management Targeted Skin Cancer Treatment (Prof. Yu Song GUO) P.40

BMH05 Non-Tolerance Type-11/2 ALK Inhibitor for Cancer Treatment (Prof. Yong HUANG) P.41

BMH06 Triple the mRNA Vaccine Efficacy Via Tailored Tail Sequence (Prof. Becki Yi KUANG) P.41

BMH07 Alleviate Glaucoma Symptoms with an Wearable Device (Prof. David LAM) P.42

BMH09 Population-Wide Disease Prediction: A Data-Driven Blood Test Health Assessment (Prof. David LAM) P.42

BMH10 Drug development for CNS regeneration (Prof. Kai LIU) P.43

BMH11 sST2 – Novel Therapeutic Target for Alzheimer’s Disease (Prof. Nancy IP) P.43

BMH12 A Blood-Based Biomarker Detection System can Screen Alzheimer’s Disease Early, Allowing for Timely Treatment (Prof. Nancy IP) P.44

BMH13 Natural Herbal Products for Treating Memory Loss and Neuronal Degeneration (Prof. Nancy IP) P.44

BMH14 Gene Editing for Familial Alzheimer’s Disease Treatment (Prof. Nancy IP) P.45

BMH16 DMCC: An Environmental Friendly API Purification System (Prof. Hong XUE) P.47

BMH17 Portable Device for Quick DNA Testing Using CRISPR/Microfluidic Technology (Prof. Shuhuai YAO) P.48

BMH18 Painless Microneedles for Transdermal Drug Delivery (Prof. King Lun YEUNG) P.48

BMH19 AAV – Gene Therapy Delivery Platform for Treatment of Brain Diseases (Prof. Nancy IP) P.49

BMH20 MeticTouch – Non-Invasive Ultrasound Ocular Drug Delivery Platform (Prof. Ying CHAU) P.50

BMH21 New Treatment for Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) by Targeting G4C2 DNA and RNA Tandem Repeats with Selective Small Molecules (Prof. Guang ZHU) P.49

BMH22 & **BMH23** A Revolutionary Approach to Develop Innovative Anticancer Drugs Targeting DNA Replication-Initiation Proteins (Prof. Chun LIANG) P.50

BMH24 A Multifunctional Bioprinting Platform for Next-Generation Synthetic Tissues (Prof. Yanglong LU) P.51

BMH25 Physics-constrained Dictionary Learning for Medical Image Compression and Denoising (Prof. Yanglong LU) P.51

BMH26 A Multifunctional Bioprinting Platform for Next-Generation Synthetic Tissues (Prof. Yanglong LU) P.51

BMH01 Advanced Polymer-Based Therapeutics for Chronic Diseases

Principal Investigator | **Prof. Ying CHAU**

Technology Readiness Level | **TRL 7**

IP status | **Patented**

Pleyron Therapeutics: Polymer-based therapeutics for new drug development and drug delivery.

Key Technology Edges:
- Pleyron is a platform company dedicated to improving the standard of living across the global community by advanced polymer and drug delivery technologies

Potential Applications
- Drug Delivery

Applicable Industries
- Bio-Medical, Healthcare and Food

BMH02 AimGel: Supercharging Cell Therapy Production and Development

Principal Investigator | **Prof. Ying CHAU**

Technology Readiness Level | **TRL 6**

IP status | **Patented**

An artificial cell-based system for ex vivo live cell growth and manipulation in cell therapy.

Key Technology Edges:
- **Doubling Efficiency:** The cell-minicking matrix accelerates T-cell growth, achieving a 2X faster proliferation rate and delivering a 4X increase in cell yield compared to conventional materials
- **Customizable Flexibility:** With the ability to fine-tune biochemical signals, AimGel adapts to different cell types much quicker than existing technologies
- **Seamless Integration:** AimGel seamlessly fits into existing cell production workflows to enhance performance without incurring additional costs

Potential Applications
- Cell therapy manufacturing
- Cell therapy discovery

Applicable Industries
- Biomedical, Healthcare and Food
- Manufacturing and Engineering
BMH 03 High-throughput AI-based screening platform for drug discovery

Principal Investigator: Prof. Tom Hiu Tung CHEUNG
Technology Readiness Level: TRL 4
IP status: Patent in Progress

Our drug discovery platform combines AI-powered high-throughput screening and cutting-edge motion-based preclinical assessment, expediting drug development by allowing for the rapid evaluation of over 3000 compounds each month.

Key Technology Edges:
- **High-Throughput Screening**: Leveraging deep learning, our semi-automatic platform can adapt dynamically to diverse disease models, vastly increasing the drug discovery pipeline’s efficiency (3000 compounds per month)
- **Unique Biologics Library**: A collection of biologically compounds derived from human cell secretomes provides a rich source for potential therapies
- **Proprietary Targets**: We hold IP for novel targets that enhance mitochondrial function and combat cellular senescence, addressing unmet needs in age-related diseases

Potential Applications
- Cancer Therapy
- Drug Discovery
- Biomedical, Healthcare and Food

Applicable Industries
- Cancer Therapy
- Drug Discovery
- Biomedical, Healthcare and Food

BMH 04 Secretion-Management Targeted Skin Cancer Treatment

Principal Investigator: Prof. Yu Song GUO
Technology Readiness Level: TRL 2
IP status: Patent in progress

Controlling the secretion of Shh as a new therapeutic target for drug discovery in Melanoma Treatment.

Key Technology Edges:
- Identified a novel target for blocking hedgehog signaling for cancer treatment
- Hedgehog signaling is one of the most important drug target for cancer treatment
- A robust platform to screen drugs to block secretion of sonic hedgehog

Potential Applications
- Cancer Therapy
- Melanoma
- Drug Discovery

Applicable Industries
- Cancer Therapy
- Drug Discovery
- Biomedical, Healthcare and Food

BMH 05 Non-Tolerance Type-1½ ALK Inhibitor for Cancer Treatment

Principal Investigator: Prof. Yong HUANG
Technology Readiness Level: TRL 3
IP status: Patented

Innovative Drug Structure Optimization with AI Structural Fitting.

Key Technology Edges:
- A bridged inhibitor to combat drug resistance
- Identification of the key linker joining two warheads
- Exceptional efficacy in xenograft mouse models

Potential Applications
- Cancer Therapy
- Drug Structure
- Drug Discovery

Applicable Industries
- Bio-Medical, Healthcare and Food

BMH 06 Triple the mRNA Vaccine Efficacy Via Tailored Tail Sequence

Principal Investigator: Prof. Becki Yi KUANG
Technology Readiness Level: TRL 4
IP status: Patented

Optimized tail sequences enable mRNA therapeutics and vaccines to have stronger and long-lasting efficacy.

Key Technology Edges:
- Do not increase synthesis cost
- Do no need to change synthesis protocol
- Can be combined with existing mRNA enhancement technologies

Potential Applications
- Enhanced mRNA Vaccines
- Enhanced mRNA Therapeutics
- Cell Therapy

Applicable Industries
- Bio-Medical, Healthcare and Food
BMH 07 Alleviate Glaucoma Symptoms with a Wearable Device

Principal Investigator Prof. David LAM

Technology Readiness Level TRL 4 IP status Patent in progress

An eye-mask providing immediate ocular tension relief to help alleviate glaucoma symptoms, offer protection for those over 50 and restore comfort for weary eyes.

Key Technology Edges:
- O-Oley clinical and O-Oley home therapy reduce intraocular tension and glaucoma risk
- First preventive treatments to decrease intraocular tension and reduce glaucoma danger in the clinic and at home
- Specific therapy with a mask that reduces the risk of overdosing and the side effects of medications

Potential Applications
- Clinical O-Oley: Clinical Intraocular Pressure Reduction in Glaucoma Patients to Reduce Dependence On Medication and Side Effects
- 50+ O-Oley: Management of Intraocular Tension in 50+ Public to Prevent Glaucoma
- Anti-Aging O-Oley: Relief of Ocular Tension in Tense Weary Eyes and Slows Tissue Stiffening from Aging

Applicable Industries
- Bio-Medical, Healthcare and Food

BMH 09 Population-Wide Disease Prediction: A Data-Driven Blood Test Health Assessment

Principal Investigator Prof. David LAM

Technology Readiness Level TRL 2 IP status Patent in progress

SpectrumCheck - Utilizes routine blood test items for a fast and accessible screening for stroke, heart disease and cancer.

Key Technology Edges:
- Implemented in multiple local public hospitals
- Based on 20 years of Hong Kong Chinese cohort data from Hospital Authorities
- Successfully predicts risk levels for stroke, heart disease, liver health, and Colon/Gastric Cancer

Potential Applications
- Disease Prediction
- Big Data
- Public Health

Applicable Industries
- Bio-Medical, Healthcare and Food

BMH 10 Drug development for CNS regeneration

Principal Investigator Prof. Kai LIU

Technology Readiness Level TRL 4 IP status Patent in Progress

Our neuroregenerative technology heralds a new era for treating CNS traumas and degenerative diseases, offering new hope for conditions such as glaucoma, stroke, and spinal injury paralysis. By fostering axonal regeneration and neural circuit repair with small molecule therapies, we’re reshaping CNS healthcare.

Key Technology Edges:
- Tailored Therapeutics: Our treatments are designed for specific neuron diseases, providing targeted and effective remedies for conditions with limited options
- Innovative Advantage: With novel small molecules, our platform stands out for its precision and potential
- Commercial Trajectory: Currently in the preclinical trial phase with secured funding, our path to market entry is clear, targeting a sector with a projected value of over $120 billion by 2030

Potential Applications
- Drug Discovery

Applicable Industries
- Biomedical, Healthcare and Food

BMH 11 sST2 – A Novel Therapeutic Target for Alzheimer’s Disease

Principal Investigator Prof. Nancy IP

Technology Readiness Level TRL 5 IP status Patented

sST2, a decoy receptor of interleukin-33-ST2 signaling, is a newly identified disease-causing factor and a promising therapeutic target for Alzheimer’s disease.

Key Technology Edges:
- Unique therapeutic target: sST2 holds potential disease-modifying effects for Alzheimer’s disease (AD) treatment. Promising research demonstrated the role of the sST2 pathway in AD pathology and microglial function, offering a novel mechanism that could significantly disrupt the AD treatment market
- Advanced sST2 drug development: Preclinical studies have validated that sST2 modulation reduces AD pathology in disease models. Approaches using ASO, siRNA, and small molecules are in progress, with an IND application expected by 2026
- Broad therapeutic application: Applicable to other diseases beyond AD that have increased sST2 levels, such as heart failure, Parkinson’s disease, etc

Potential Applications
- Drug Discovery

Applicable Industries
- Medicines for Alzheimer’s disease, heart failure and other diseases associated with increased sST2 level
BMH 12 A Blood-Based Biomarker Detection System can Screen Alzheimer’s Disease Early, Allowing for Timely Treatment

Principal Investigator	Prof. Nancy IP
Technology Readiness Level | TRL 7
IP status | Patent in Progress

In the battle against Alzheimer’s disease, early detection is key to effective intervention. Our cutting-edge diagnostic system employs proteomics and advanced machine learning to identify early-stage Alzheimer’s up to a decade before clinical symptoms manifest. By analyzing subtle changes in blood biomarkers, our technology not only detects the disease early but also monitors its progression and response to treatment, enabling timely and personalized therapeutic strategies.

Key Technology Edges:
- **Early Detection**: Capable of identifying Alzheimer’s 5-10 years before symptom onset, our system offers a critical head start for disease-modifying treatments
- **Disease Monitoring**: Tracks the pathology of Alzheimer’s in the brain through blood biomarkers, facilitating ongoing assessment of disease progression
- **Screening Tool**: Serves as an invaluable screening solution for initiating early-stage Alzheimer’s interventions, potentially altering the course of the disease

Potential Applications
- Medical device

Applicable Industries
- Biomedical, Healthcare and Food

BMH 13 Natural Herbal Products for Treating Memory Loss and Neuronal Degeneration

Principal Investigator	Prof. Nancy IP
Technology Readiness Level | TRL 5
IP status | Patent in Progress

Blending traditional Chinese medicine with contemporary neuroscience, our team pioneers herbal solutions to enhance synaptic plasticity—key to memory and cognition. Our research yields herbal formulas targeting Alzheimer’s, Parkinson’s, and stroke-related cognitive deficits, uniting ancient wisdom with modern science.

Key Technology Edges:
- **Synaptic Enhancement**: Natural active ingredients identified to enhance synaptic communication, addressing the early stages of neurodegeneration
- **TCM Integration**: Expertly selected Chinese herbs with a legacy of clinical use, now validated by scientific research
- **Advanced Characterization**: A cutting-edge platform that scientifically pinpoints and utilizes the synaptic benefits of TCM, directly targeting the source of memory loss and neurodegeneration

Potential Applications
- Herbal formulations for memory loss
- Herbal medicines for Alzheimer’s disease, Parkinson’s disease, and stroke

Applicable Industries
- Biomedical, Healthcare and Food
- Retail, Consumer Goods, and Hospitality

BMH 14 Gene Editing for Familial Alzheimer’s Disease Treatment

Principal Investigator	Prof. Nancy IP
Technology Readiness Level | TRL 5
IP status | Patent in Progress

Genome editing-based approaches to delete Alzheimer’s risk genes and permanently rescue disease pathologies. The gene editing technology can be applied to other inherited diseases.

Key Technology Edges:
- Targeted deletion of Alzheimer’s risk genes to rescue disease pathologies
- First in the world to achieve non-invasive brain-wide genome editing approach
- Universal genome editing approach for disease mutations based on genome-wide association studies

Potential Applications
- Drug Discovery

Applicable Industries
- Biomedical, Healthcare and Food

BMH 15 Development of Anti-Angiogenic Eyedrop for Eye Disease

Principal Investigator	Prof. Kari Tsim
Technology Readiness Level | TRL 3
IP status | Patent in Progress

Therapeutic potential of resveratrol, polydatin and/or its analogues for eyedrop against age-related macular degeneration (AMD) by angiogenic inhibition.

Key Technology Edges:
- Solid foundation and clinical applications of VEGF-targeted drugs from traditional Chinese medicines (TCMs) [7 publications and 1 Chinese patent]
- Phytochemicals targeting VEGF with easy administration with low-cost manufacturing, long-term administration and easy topical instillation
- New therapeutic and non-invasiveness strategy over standard treatment options such as argon laser photoagulation and photodynamic therapy

Potential Applications
- Anti-Angiogenic Therapy for Abnormal or Pathologic Angiogenesis in Age-Related Macular Degeneration (AMD), Retinopathy of Prematurity (Rop) and Diabetic Retinopathy
- Anti-Angiogenic Therapy for Angiogenesis of Various Cancers E.g., Colorectal Cancer
- Prevention of Oxygen Radical Damage in Rheumatoid Arthritis (Roa), Atherosclerosis, Pulmonary Emphysema, Cancer, Inflammatory Bowel Disease And Periodontal Disease

Applicable Industries
- Bio-Medical, Healthcare and Food
A Non-Invasive Solution to Amputation and Skin Transplant

Principal Investigator | Prof. Karl TSIM
Technology Readiness Level | TRL 6 | IP status | Patented

Our SGC biologic revolutionizes refractory wound care with a patented, protein-based regenerative technology, proven in 3A hospitals to heal stubborn wounds efficiently, reducing time and costs.

Key Technology Edges:
- **Personalized Effectiveness**: Treatments from autologous blood can achieve a 100% healing success, revolutionizing the management of stubborn wounds
- **Robust Research Foundation**: Backed by over 3 publications and 15 patents, the ongoing development with animal blood sources ensuring safety through comprehensive Immunogenicity and Ames Tests
- **Therapeutic Versatility**: Versatile applications across diabetic foot ulcers, burns, eczema, dermatitis, and upcoming potential in spinal nerve recovery, arthritis, and anti-aging skin treatments

Potential Applications
- Medical device
- Biomedical Aesthetics
- Retail, Consumer Goods, and Hospitality
- Biomedical, Healthcare and Food

Applicable Industries
- Medical device
- Tumor Biology
- Infectious Disease
- Discovery of Novel Cell/Molecular Targets
- Environmental and Microbial Applications
- Bio-Medical, Healthcare and Food

AI-Enabled Medical Imaging for Next-Gen Histological Imaging

Principal Investigator | Prof. Terence WONG
Technology Readiness Level | TRL 5 | IP status | Patented

CHAMP (Computational High-throughput Autofluorescence Microscopy by Pattern Illumination) is a transformative diagnostic tool that revolutionizes histological imaging by providing rapid, preparation-free cancer imaging.

Key Technology Edges:
- **Rapid Results**: CHAMP is expected to deliver clinical gold standard images within 3 minutes compared to 3 days for the current clinical method
- **Intraoperative Utility**: CHAMP offers rapid, stain-free and preparation-free, thick tissue histological imaging suitable even during surgery
- **Versatile Application**: CHAMP, unlike current intraoperative method, is applicable to nearly all biological tissues with primary focus on lung and breast cancer

Potential Applications
- Medical Imaging
- Medical device
- Education, Research, and Professional Services
- Biomedical, Healthcare and Food

Applicable Industries
- Medical Imaging
- Medical device
- Biomedical, Healthcare and Food
- Education, Research, and Professional Services
- Bio-Medical, Healthcare and Food

Massively Parallel High-Throughput Multi-Omic Single-Cell Sequencing for Target Discovery

Principal Investigator | Prof. Angela WU
Technology Readiness Level | TRL 5 | IP status | Patent in progress

OneDrop: A high-throughput solution for single-cell sequencing with redesigned reaction and chip.

Key Technology Edges:
- Novel droplet single cell sequencing platform distinct from existing products on the market
- High-throughput sequential droplet reactions, up to 18,000 reactions per run
- Multi-omic single-cell sequencing solutions for DNA/RNA simultaneous profiling

Potential Applications
- Tumor Biology
- Infectious Disease
- Discovery of Novel Cell/Molecular Targets
- Environmental and Microbial Applications
- Bio-Medical, Healthcare and Food

Applicable Industries
- Medical Imaging
- Medical device
- Biomedical, Healthcare and Food
- Bio-Medical, Healthcare and Food

DMCC: An Environmental Friendly API Purification System

Principal Investigator | Prof. Hong XUE
Technology Readiness Level | TRL 6 | IP status | Patented

A highly scalable dispersed mobile-phase countercurrent chromatography platform for purification of commercially valuable chemicals.

Key Technology Edges:
- A breakthrough platform technology with patent protections, for effective purification of commercially valuable chemicals
- Unprecedented scalability for purification of chemical materials at industrial scales unachievable with any existing technologies
- Both user and environmentally friendly, with no solid waste and no irreversible material loss, commonly occurred using competitive technologies

Potential Applications
- Demonstrated Effective Isolation of Active Pharmaceutical Ingredients From Chinese Herbal Medicine Extracts
- Broad Applications in Purification of Organic Chemical Synthesized Materials
- Potential Applications in Petroleum Chemical and Nuclear Industries, with No Radioactive Solid Waste Generated and Hence Environmentally Friendly

Applicable Industries
- Medical device
- Tumor Biology
- Infectious Disease
- Discovery of Novel Cell/Molecular Targets
- Environmental and Microbial Applications
- Bio-Medical, Healthcare and Food
BMH 22 Portable Device for Quick DNA Testing Using CRISPR/Microfluidic Technology

Principal Investigator | Prof. Shuhuai YAO
Technology Readiness Level | TRL 5
IP status | Patent in progress

Molecular tests with sensitivity as PCR using next-generation nucleic acid detection system.

Key Technology Edges:
- Simpler self-testing enabled by microfluidic passive-driven chip
- Faster determination of CRISPR to compete with PCR
- Lower cost of miniaturized fluorescence system to test at home

BMH 23 Painless Microneedles for Transdermal Drug Delivery

Principal Investigator | Prof. King Lun YEUNG
Technology Readiness Level | TRL 3
IP status | Patented

A new generation of painless drug delivery system suitable for advanced pharmaceuticals, biomolecules, and stem cells.

Key Technology Edges:
- Uses extremely hard and sharp crystalline zeolites as microneedle materials that are extremely safe
- Easy and inexpensive to fabricate, use, and dispose
- Application flexibility and compatibility

BMH 24 AAV - gene therapy delivery platform for treatment of brain diseases.

Principal Investigator | Prof. Nancy IP
Technology Readiness Level | TRL 4
IP status | Patented

We aim to develop AAVs that can effectively cross the blood-brain barrier and deliver therapeutic genetic materials or tools to target brain cells for the treatment of brain diseases.

Key Technology Edges:
- Targeted AAV Screening: Identify AAV capsids capable of crossing the BBB and delivering to specific brain cells while exhibiting limited off-target expression, reduced systemic organ toxicity, and low immunogenicity
- Non-Invasive Delivery Method: Achieve non-invasive delivery to brain cells through IV injection, offering a patient-friendly treatment approach
- Strategic Partnership for AAV Development: Engage in a strategic partnership with Cure Genetics to co-develop and license AAV(s), utilizing a primate model

BMH 27 New treatment for Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) by Targeting G4C2 DNA and RNA Tandem Repeats with Selective Small Molecules

Principal Investigator | Prof. Guang ZHU
Technology Readiness Level | TRL 4
IP status | Patented

Our project leads ALS and FTD research, targeting the G4C2 expansions in C9orf72. We’ve detailed G4C2 structures and patented molecules binding these targets, a significant stride toward a cure.

Key Technology Edges:
- Structural Mastery: Mapping of G4C2 DNA and RNA structures associated with ALS and FTD, establishing a foundation for targeted drug development
- Innovative Lead Compounds: Pioneering identification and development of lead compounds that selectively target pathogenic G4C2 DNA/RNA structures
- Selective Efficacy: Proven high specificity of our small molecules for G4C2 structures, a distinction not found in current anti-G-quadruplex molecules
BMH 30 MeticTouch – Non-invasive Ultrasound Ocular Drug Delivery Platform

Potential Applications
- Drug Delivery
- Building/Structural materials
- Biomedical, Healthcare and Food
- Manufacturing and Engineering

Applicable Industries
- Biomedical, Healthcare
- Food
- Manufacturing
- Research and Services

Principal Investigator Prof. Ying CHAU

Technology Readiness Level TRL 6

IP status Patented

MeticTouch® is an innovative non-invasive ocular drug delivery technology that offers a patient-friendly approach to administering medications to the eye. By eliminating the need for injections, MeticTouch® improves comfort, convenience, and potentially enhances treatment outcome.

Key Technology Edges:
- **Innovative Delivery:** MeticTouch® is the world’s first non-invasive ocular drug delivery technology that has shown a solid safety profile and effectiveness across various ocular conditions.
- **Pharma Compatibility:** Designed to seamlessly integrate with both existing and new drug products without requiring reformulation, MeticTouch® is highly adaptable to a broad range of therapeutics.
- **Customizable Solutions:** MeticTouch® can be tailored to meet the strategic needs of biopharmaceutical companies, enhancing the value proposition of both new and established drugs.

BMH 32 Physics-constrained Dictionary Learning for Medical Image Compression and Denoising

Potential Applications
- Defect Inspection/ Monitoring
- Medical Imaging
- Information Technology, Communications and Software Services
- Biomedical, Healthcare and Food

Applicable Industries
- Biomedical, Healthcare
- Food
- Manufacturing
- Research and Services

Principal Investigator Prof. Yanglong LU

Technology Readiness Level TRL 5

IP status Patented

Our innovative method compresses and denoises medical images using a physics-constrained dictionary, reducing data storage to less than 1% and preserving image integrity with minimal noise.

Key Technology Edges:
- **High Compression Ratio:** Achieves extreme data reduction, compressing three-dimensional medical images to a fraction of their original size.
- **Dual Functionality:** Simultaneously compresses and denoises images, enhancing clarity and diagnostic value.
- **Versatile Application:** Adapts to various data dimensions and types, ensuring broad utility across medical imaging.

BMH 31 A Revolutionary Approach to Develop Innovative Anticancer Drugs Targeting DNA Replication-Initiation Proteins

Potential Applications
- Drug Discovery
- Chemical Synthesis
- Biomedical, Healthcare and Food
- Education, Research, and Professional Services

Applicable Industries
- Biomedical, Healthcare
- Food
- Manufacturing
- Research and Services

Principal Investigator Prof. Chun LIANG

Technology Readiness Level TRL 6

IP status Patented

Our platform targets cancer’s pre-RC proteins with DRIPs inhibitors, offering a transformative approach for various cancers and precancerous conditions, with potential in CGT and neurodegeneration. EN002 and EK4-106 show preclinical success; EN002-gel is Phase II-ready after a successful Phase I, highlighting our solution’s market promise.

Key Technology Edges:
- **Broad Application:** Pioneering treatments for a wide array of cancers and precancerous lesions, with implications for CGT and neurodegenerative diseases.
- **Competitive Advantage:** Exceptional potency and safety, offering significant improvements over current cancer therapies.
- **Commercial Progress:** Successful Phase I clinical trials and forthcoming Phase II, signaling rapid progress towards market entry.

BMH 33 A Multifunctional Bioprinting Platform for Next-Generation Synthetic Tissues

Potential Applications
- Medical device
- Manufacturing Technology / Process Enhancement
- Manufacturing and Engineering
- Biomedical, Healthcare and Food

Applicable Industries
- Biomedical, Healthcare
- Food
- Manufacturing
- Research and Services

Principal Investigator Prof. Yanglong LU

Technology Readiness Level TRL 4

IP status Patented in progress

Our cutting-edge bioprinting platform excels in precision, printing various materials and featuring real-time monitoring to detect and correct defects instantly, advancing tissue engineering.

Key Technology Edges:
- **Open-source Customization:** Tailor both software and hardware without cost, encouraging innovation and adaptation in various research settings.
- **Multi-material Capability:** Print with a minimum of three materials concurrently, allowing the creation of intricate, multi-faceted structures.
- **Real-time Quality Assurance:** Immediate monitoring and adjustment during the printing process guarantee superior quality and rapid error mitigation.
HKUST: Global Recognition

World’s No.47
QS World University Ranking 2025

36th Worldwide, 1st in Hong Kong
Times Higher Education Impact Rankings 2024

Overall No. of Patents Granted No.1 in Hong Kong
Based on UGC’s definition under the Common Data Collection Format (CDCF) in 2022/23

World’s Top 10 in Data Science & Artificial Intelligence
Hong Kong’s Best in Engineering & Technology and Natural Sciences

World’s No.3, Hong Kong No.1
Young University Rankings 2024 by Times Higher Education

Patent Influence Metric No.1 in China and 33rd Globally
Nature’s leading 200 academic institutions by patent influence metric published in 2022

Granted US Utility Patents 2023
Top 100 Worldwide Universities
Published by the US National Academy of Inventors

World’s Top 50 for 12 Subjects
QS World University Rankings by subject 2024