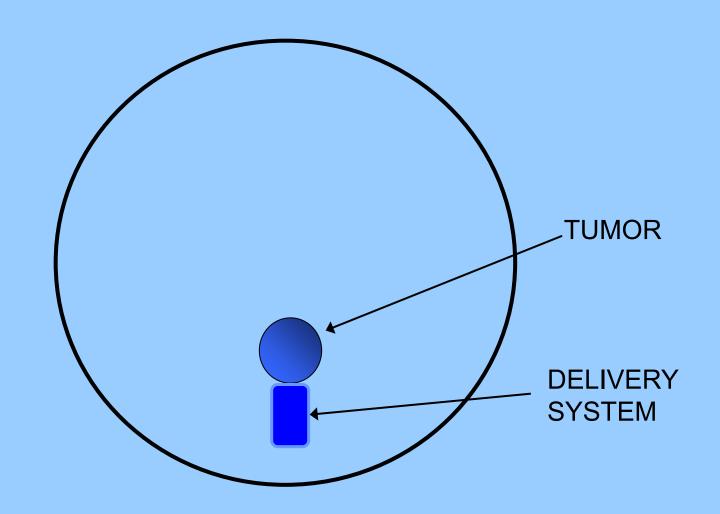
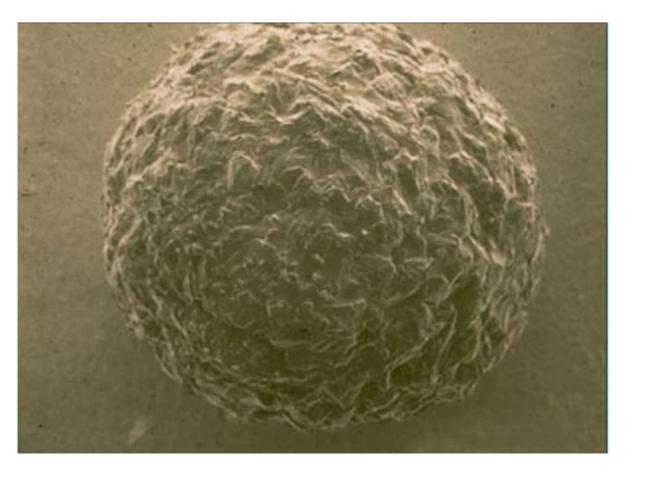
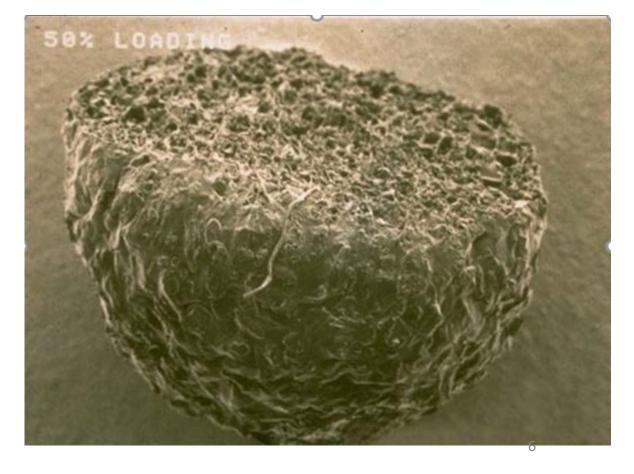
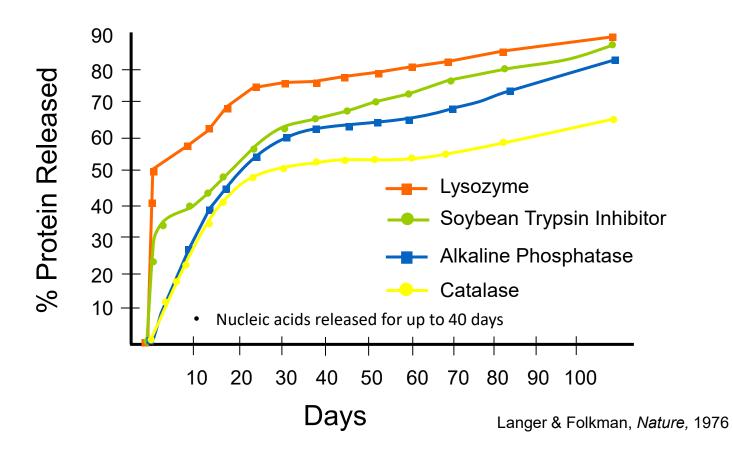

HKUST Innovation Master Class


Journey from Science to Innovation

14 November 2024







This approach will not work because

Large molecules cannot slowly pass through solid materials

nature reviews cancer

Published: 13 June 2023

mRNA-based cancer therapeutics

Chuang Liu et al.

References

1.) Langer, R. & Folkman, Nature, 263, 797-800 (1976).

"This work presents the first report of nucleic acids...
that can be encapsulated and delivered by tiny
particles."

nature nanotechnology

: Published: 17 March 2023

mRNA therapy at the convergence of genetics and nanomedicine

João Conde et al.

"Indeed, in 1976, Robert Langer and Judah Folkman were the first to report the use of nano- and microparticles to package nucleic acids such as DNA and RNA⁵, raising the possibility of using DNA or RNA as a drug."

This approach will not work because

Large molecules cannot slowly pass through solid materials

 Organic solvents will denature peptides or proteins or nucleic acids

"One evening, I went to a faculty dinner at a Chinese restaurant with Bob Langer and some senior MIT professors. A senior scientist sat quizzing us while smoking a cigar. When the older scientist heard Langer's concepts for ... drug delivery, he blew a cloud of smoke in Langer's face and said, 'You better start looking for another job."

> Professor Michael Marletta CH and Annie Li Chair in the Molecular Biology of Diseases, University of California – Berkeley Member, National Academy of Sciences

Angiogenesis inhibitors approved for clinical use

Year Approved	Drug	Disease	Year Approved	Drug	Disease
2004	Avastin (Bevacizumab)	Colorectal Cancer	2014	Curamaa (Bamuaiauraah)	Non small Call Lung Consor
2004	Macugen (Pegaptanib)	Macular Degeneration	2014	Cyramza (Ramucirumab)	Non-small Cell Lung Cancer
2005	Nexavar (Sorafenib)	Kidney Cancer	2015	Lucentis (Ranibizumab)	Diabetic Retinopathy with DME
2006	Sutent (Sunitinib)	Gastric (GIST), Kidney Cancer	2017	Lucentis (Ranibizumab)	Diabetic Retinopathy
2006	Lucentis (Ranibizumab)	Macular Degeneration	2017	Mvasi (bevacizumab-awwb)	Metastatic colorectal cancer
2007	Nexavar (Sorafenib)	Hepatocellular Carcinoma	2019	Zirabev (bevacizumab-bvzr)	Metastatic colorectal cancer
2008	Avastin (Bevacizumab)	Breast Cancer	2020	Avastin (Bevacizumab)	Metastatic hepatocellular carcinoma (HCC) with Tecentriq
2009	Avastin (Bevacizumab)	Glioblastoma	2021	Fotivda (Tivozanib)	Renal cell carcinoma
2009	Votrient (Pazopanib)	Kidney cell carcinoma	2021	Welireg (Bezultifan)	Pancreatic neuroendocrine tumors, renal cell
2009	Avastin (Bevacizumab)	Kidney Cancer	2021	Cabozantinib (Cabometyx)	Kidney Cancer
2011	Sutent (Suntinib)	Gastrointestinal Stromal Tumors	2021	Lenvima (Lenvatinib)	Kidney Cancer
2011	Eylea (Aflibercept)	Macular Degeneration	2022	VABYSMO (Faricimab-svoa)	Macular Degeneration
2012	Inlyta (Axitinib)	Kidney Cancer	2022	CIMERLI (Ranibizumab-eqrn)	Macular Degeneration
2012	Eylea (Aflibercept)	Central Retinal Vein Occlusion			
2012	Stivarga (Regorafenib)	Colorectal Cancer	2022	Vegzelma (bevacizumab-adcd)	Colorectal cancer
2012	Cometriq (Cabozantinib)	Thyroid Cancer	2022	Beovu (Brolucizumab)	Diabetic macular edema
2012	Zaltrap (ziv-afilbercept)	Metastatic Colorectal Cancer	2022	Alymsy (Bevacizumba-maly)	Metastatic colorectal cancer
2013	Avastin (Bevacizumab)	Metastatic Colorectal Cancer			
2013	Cyramza (Ramucirumab)	Advanced Stomach Cancer	2023	LONSURF (Trifluridine and tipiracil with bevacizumab)	Metastatic colorectal cancer
2013	Stivarga (Regorafenib)	Gastrointestinal stromal cancer	2024	Yesafili (aflibercept-jbvf)	Macular Degeneration
2014	Avastin (Bevacizumab)	Cervical Cancer	2024	Opuviz (aflibercept-yszy)	Macular Degeneration
2014	Avastin (Bevacizumab)	Recurrent Ovarian Cancer	2024	Pavblu (aflibercept-ayyh)	Macular Degeneration

"Generally the agent to be released is a relatively small molecule with a molecular weight no larger than a few hundred. One would not expect that macromolecules, e.g. proteins, could be released by such a technique because of their extremely small permeation rates...However, Folkman and Langer have reported some surprising results that clearly demonstrate the opposite."

-Stannett, Koros, Paul, Baker, Lonsdale, Adv. Poly. Sci., 1979.

1st patent issued

U.S. Patent 4,391,797: Folkman and Langer

"Controlled release of macromolecules"

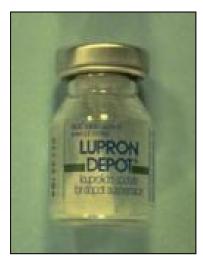
Enzytech/Alkermes

■ 1st 4 employees were former students

 Today, 25 products FDA approved or in clinical trials

New treatments for schizophrenia,
 alcoholism, narcotic addiction, diabetes

■ ~ 2000 employees



Biomolecules

Proteins – Monodisperse

Nucleic acid (e.g. DNA) – Monodisperse

Polysaccharides – Polydisperse

Mission

Harness glycomics towards improving existing therapies and develop novel therapeutics for human diseases

Approach to finding glycoforms

Fractionate to find the right glycoform

■ The 1st sequencing approach to complex polysaccharides (Sasisekharan, Venkataraman, Science, 1999) uses molecular scissors (Langer, Science, 1982)

Potential products

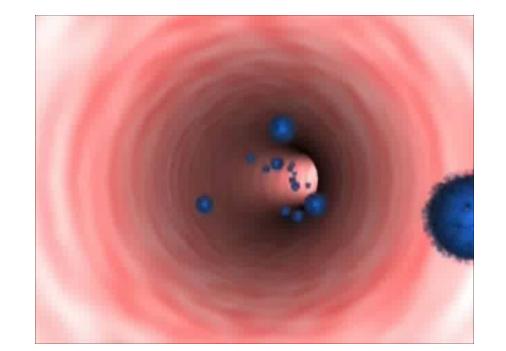
Heparins

Other complex polymers

New glycoproteins

Momenta

2001	Started with 2 former students (Ram Sasisekharan & Ganesh Venkataraman)
2004	Goes public
2003 & 2006	Major investment by Novartis
2010	Ist Lovenox biogeneric approved by FDA (The Ist complex drug approved based on analytic data; Largest syringe launch in history)
2011	Major investment by Baxter
2015	Capoxone approved by FDA
2016	Major investment by Mylan
2017	Major Investment by CSL
2020	Johnson & Johnson acquires Momenta for \$6.5B USD

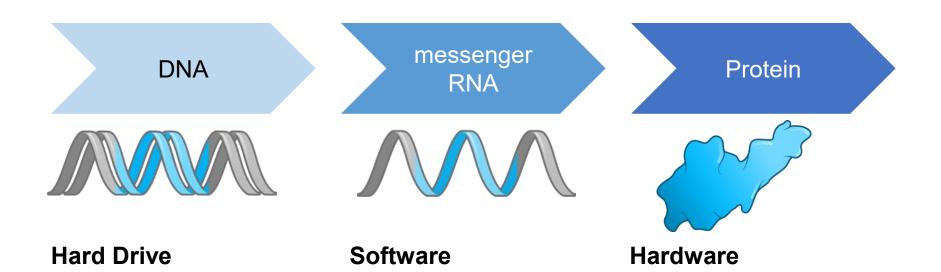

Momenta Pharma soars on landmark FDA approval

The gene medicine bottleneck: Delivery

"There are only three problems in gene therapy: delivery, delivery, and delivery."

—Inder Verma, 1999

"We need to solve the delivery problem"


-Phil Sharp 2007

Small molecules

Genetic therapy (e.g., siRNA, mRNA)

Central Dogma of Molecular Biology

mRNA reads off the

cells to make protein

DNA and instructs

DNA stores our

genetic information

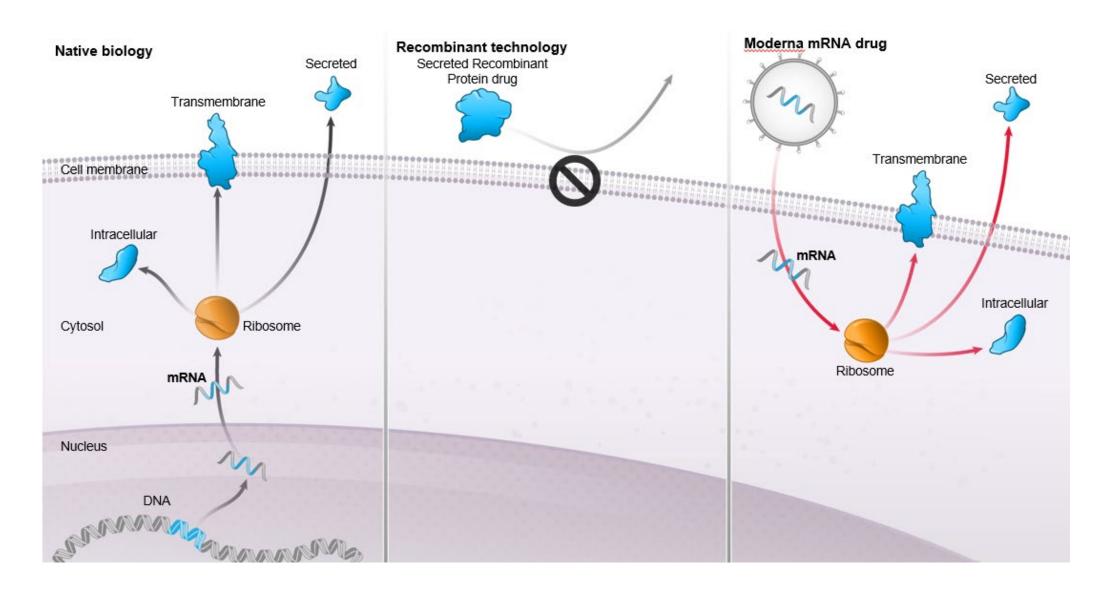
Proteins accomplish the work

signaling, metabolism, etc.

in the body – structure,

Delivery of nucleic acids from tiny particles, Nature, 263: 797-800, 1976.

PEG coatings, <u>Science</u>, 263: 1600-1603, 1994.


Ionizable components. Biotechnology and Bioengineering, 67: 217-223, 2000.

Proceedings of the National Academy of Sciences, 98: 3, 1200-1205, 2001.

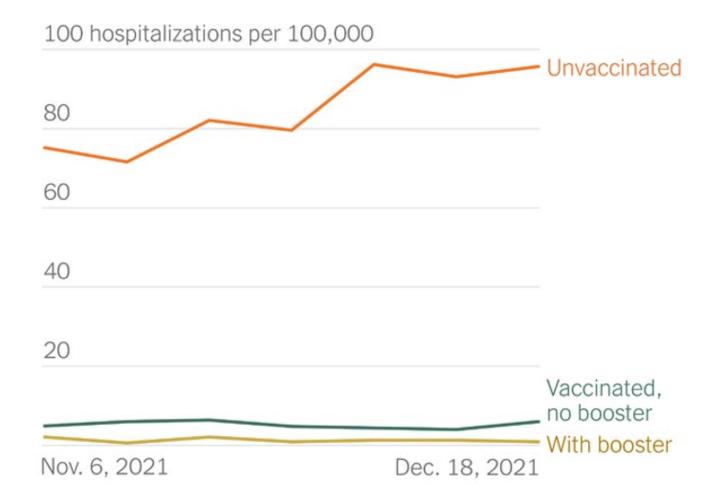
Large Numbers of Ionizable lipids, Nature Biotechnology, 26: 561-569, 2008

Microfluidic Manufacturing of Drug Delivery Nanoparticles, Nano Letters, 8: 2906-2912, 2008

If mRNA could be a drug... it would enable new intracellular and membrane-bound proteins

Moderna Covid Vaccine Timeline

January 11, 2020 Chinese scientists publish virus genetic sequence


January 13, 2020 Finalize messenger mRNA vaccine design

February 24, 2020 Ship vaccine batches to NIH for testing

March 16, 2020 Ist dose in humans (Seattle, WA)

Weekly hospitalizations for U.S. adults age 50-64

Vaccine effectiveness (Mayo Clinic 2/1/22)

Moderna94 percent

Pfizer/ BioNtech91 percent

Johnson and Johnson 66 percent (removed from US Market).

Moderna is safest, most effective mRNA vaccine against COVID-19 for older adults, study shows

Reference: Journal of American Medical Association Network Open

August 2, 2023

6,388, 196 patients

Average age: 76.3 years

Efficacy — Moderna's vaccine had a 15% lower risk of diagnosed Covid-19 compared to Pfizer-BioNtech

Both are more effective than any other vaccine

Safety — Moderna's vaccine had fewer side-effects, e.g.:

4% lower risk of pulmonary embolism compared to Pfizer-BioNtech

2% lower risk of thromboembolic events compared to Pfizer-BioNtech

RESEARCH ARTICLE

Comparative safety of mRNA COVID-19 vaccines to influenza vaccines: A pharmacovigilance analysis using WHO international database

- 18, 755 and 27, 895 individuals who reported to VigiBase....respectively, from January 1, 2020 to January 17, 2021
- The overall safety profile showed a lower risk of serious Adverse Events Following Immunization (AEFI) following mRNA vaccines compared to the influenza vaccines.

U.S. Covid Treatments

(as of March 16, 2023)

Vaccines	49 failed vaccines	2 approved vaccines
Treatments	209 failed treatments	1 approved treatment
Antivirals	153 failed antivirals	1 approved antiviral

Source: Forbes (March 2023)

As of March 16, 2023, Commonwealth Fund (U.S.) estimates that the vaccine

Prevented 3,000,000 deaths due to Covid

Prevented over 18,000,000 hospitalizations

Prevented almost 120,000,000 Covid infections

• Saved the U.S. \$1,500,000,000,000 USD in medical costs

Individualized Neoantigen Therapies (Personalized Cancer Vaccines)

- > 157 patients with stage III/IV melanoma
- ➤ Pcv—Select up to 34 mutations known as neoepitopes in patient cancer cells. Incorporate the genetic code of these neoepitopes into mRNA vaccine the same way it was done for COVID vaccines (i.e. mRNA in nanoparticles)
- > Randomized double-blind trial
 - ➤ Half got Keytruda
 - ➤ Half got Keytruda plus pcv
- >At 2 years, risk of recurrence or death reduced by 44% (one-sided p value=0.0266)
- >At 3 years, the risk of recurrence or death reduced by 49% (one-sided p-value = 0.0095.)

HKUST Innovation Master Class

Journey from Science to Innovation

14 November 2024

